
Properties of Weak Values

Mira Weißl

München 2016





Properties of Weak Values

Mira Weißl

Master Thesis
Department of Physics

Ludwig–Maximilians–Universität
München

handed in by
Mira Weißl

Munich, December 21, 2016



Supervisor: Prof. Dr. Harald Weinfurter



Eigenschaften von Weak Values

Mira Weißl

Masterarbeit
Fakultät für Physik

Ludwig–Maximilians–Universität
München

vorgelegt von
Mira Weißl

München, den 21.12.2016



Gutachter: Prof. Dr. Harald Weinfurter



Abstract
The concept of the weak value, introduced in 1988 by Aharonov, Albert and Vaidman [4],
has been subject to controversies about its interpretation ever since, despite that it has
proven useful for various problems. This thesis aims to shed light on the question about
the physical meaning of the weak value. This is accomplished by the comparison with
standard quantities as the eigenvalue and the expectation value. In particular the distance
between the respective pointer states associated with these quantities, expressed in terms
of the respective Bures angle, serves as a criterion for similarity. In [47] we have shown
that the Bures angle between the states associated with a weak value and an eigenvalue
scales differently than the Bures angle between the states associated an expectation value
and an eigenvalue, if the interaction strength between object and pointer system is varied.
This indicates a stronger similarity of weak values to eigenvalues, than to expectation
values. This comparison is experimentally implemented by an interference experiment
which comprises the quantum states under study in the respective interferometer arms.
The interaction is modelled by a birefringent element, which couples the observable of
the object system, the photon polarization, and the observable of the pointer system, the
spatial degree of freedom. In this thesis the interferometer for the experimental realization
is set-up and optimized to meet the requirements needed to enable the comparison to the
theoretical expressions of the Bures angle. Despite of imperfect experimental conditions the
results can resolve the fitted expressions in the available range of interaction strength and
the difference in the scaling behaviour is clearly demonstrated. These results are discussed
and evaluated in conclusion.
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1 Introduction
One of the peculiar features of quantum mechanics is that a measurement of a physical
system usually irrevocably changes its quantum state [38, 24]. It leaves the measured
system in an eigenstate of the measured observable, which is independent of the state
beforehand. The corresponding eigenvalue is considered to be the outcome of the measure-
ment. Non-ideal or weak measurements represent processes where the standard paradigm
of quantum measurement is modified. There the coupling between the quantum system
and the measurement device is weak in the sense that only little information about the
quantum system can be extracted in a single measurement. Besides having the drawback
that many identically prepared systems are needed to precisely extract the expectation
value of an observable of the quantum system, one major advantage of weak measurements
is that the state of the system is almost left undisturbed by the weak measurement, i.e., it
does not ’collapse’ into an eigenstate. With the introduction of the so-called weak value in
1988, Aharonov, Albert and Vaidman combined the idea of measuring the quantum system
only weakly with the idea of selecting a particular final state [4]. In contrast to classical
mechanics, the initial and final boundary conditions of a closed quantum system can be
chosen freely, because the initial state does not determine the final one and vice versa.
In particular identical measurements on identically prepared systems can yield different
results, which follows from the superposition principle.
From the first experiment that implemented the weak value 25 years ago [37] its con-

cept was henceforth fruitfully applied to various fields of research. Its unusual properties
provide a novel approach to extract information about a quantum system. A recent exper-
iment implemented the concept to measure the transverse spatial wave function of a single
photon in a direct way [29]. Another example concerns the famous double slit experiment,
where it was accomplished to determine the average momenta of particles arriving at a
given, postselected position and thereby to reconstruct the average propagation of photons
through the slit without destroying the interference pattern [23]. Furthermore the weak
value is used to address fundamental questions in quantum mechanics, among them the
test of the assumption of macroscopic realism [17, 32, 48]. Its most practical application
is its use as a metrological technique for its potential in amplifying small signals if certain
types of noise are present [28, 11].
Despite the fact that the concept of weak values has proven useful for many purposes, its

interpretation is still disputed in the science community. Therefore the research question
arises: What is the physical meaning of the weak value? We investigate the quantity from
an operational point of view, in how it interacts with other systems, i.e., the measurement
device. In particular we are interested in how its behaviour compares with standard quan-
tities as the eigenvalue and the expectation value of an observable of a quantum system.



2 1. Introduction

This is analysed by the comparison of the respective quantum state of the measurement
device, henceforth called the pointer system. The pointer state is fundamental to extract
information about the properties of the quantum system under study, which is henceforth
called the object system. This thesis is concerned with the experimental quantitative anal-
ysis of this comparison, which is implemented in an interference experiment. In particular,
one arm of the interferometer prepares the object state corresponding to an eigenvalue,
while the other one comprises a state, which is described by a weak value, and a modified
state, which is described by an expectation value. Our criterion for similarity is the close-
ness of the respective pointer quantum states, which translates to the ability to interfere.
This research is based on the theoretical analysis of the scaling of the distance between
the respective states, when the interaction strength between object and pointer system is
varied. In [47] we have shown that the distance between the states associated with a weak
value and an eigenvalue scales differently as the distance between the states associated with
an expectation value and an eigenvalue. This shows a stronger similarity of weak values
to eigenvalues, than to expectation values. The interaction is experimentally implemented
by a birefringent element, which weakly couples the observable of the object system, in
our case the photon polarization, and the observable of the pointer system, realized by the
spatial degree of freedom. The strength of interaction is varied by tilting the birefringent
crystal, which introduces a spatial separation of the two polarization components of the
laser beam. This lowers the coherence of the interfering states, which alters the visibility,
which is experimentally obtained by measuring the resulting intensity modulation. The
aim is to experimentally determine the scaling behaviour of the visibility in dependence
of the interaction strength for both cases of interest. In the course of this thesis the in-
terferometer needed for the comparison of states was set-up and optimized. The results
obtained enabled the comparison to the theory and verified the predicted difference in the
scaling behaviour.
The thesis is structured in the following way. Chapter 2 explains the basic principles,

both regarding the quantum mechanical description of the standard measurement process
and the relevant optical processes underlying the experimental realization. Chapter 3
introduces the notion of the weak value, explains its main idea and discusses its properties
and associated applications. The underlying theoretical expressions for the Bures angle are
presented, followed by the analysis of the conceptual implementation of the comparison.
In chapter 4 the experimental set-up is described and the methods applied are illustrated.
Furthermore the measurement protocol of the interference experiment and the associated
data evaluation is outlined. The main chapter, 5, analyses the requirements for a successful
experimental realization and summarizes the measurements performed. The results of the
interference experiment are discussed and compared to the theory. A conclusion of this
thesis and an outlook is given in the last chapter.



2 Basics
This chapter provides the basic principles for this thesis, both the quantum mechanical
description as well as the underlying optical processes.

2.1 Quantum mechanics
Some aspects of the quantum mechanical theory will be summarized briefly by means
of a polarization-based model system, which will be further used for the experimental
confirmation of the theoretical claim, while a more in-depth discussion can be found in
standard textbooks on quantum mechanics. The standard measurement process will be
introduced in more detail because it is fundamental for describing the weak value formalism
(see chapter 3).

2.1.1 Polarization based model system
The electric field of a photon moving in free space oscillates in the plane perpendicular to
the propagation axis, which is illustrated in Fig. 2.1. The polarization state describes the
orientation of the electric field oscillations over time. To span this polarization state two
orthogonal basis vectors are needed.
In quantum mechanics the physical state of a system is represented by a state vector in

a Hilbert space H, which is in general infinite-dimensional and complex. In the case of the
polarization degree of freedom the Hilbert space is reduced to two dimensions, i.e., it is
spanned by two orthonormal vectors, in Dirac notation |H〉 and |V 〉, denoting horizontal
and vertical polarization states, respectively. Any normalized linear combination of the
two basis states constitutes another valid state according to the quantum superposition
principle [31]:

|ψ〉 = a|H〉+ b|V 〉 = a

(
1
0

)
+ b

(
0
1

)
(2.1)

Here a, b are complex numbers, which are called amplitudes. They must satisfy the normal-
ization condition |a|2 + |b|2 = 1. |ψ〉 contains the maximal possible information about the
physical state. Measurable quantities, so-called observables, correspond to Hermitian op-
erators Ô. According to the projection postulate an ideal measurement of Ô on a system in
state |ψ〉 will project the system state onto one of the eigenstates, say |on〉, of that observ-
able and the result will be the corresponding real-valued eigenvalue on. In the standard in-
terpretation this is referred to as the postulate of the reduction of the wave function, which
is irreversible. The expectation value of Ô with respect to state |ψ〉 is given by 〈ψ|Ô|ψ〉.
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Figure 2.1: Linear polarised light propagating in z direction with the electric field oscillation
in blue and the magnetic field oscillation in red from [19].

The probability for some particular eigenstate to occur is |〈on|ψ〉|2 = 〈ψ|on〉〈on|ψ〉, with
|on〉〈on| being the projector onto the eigenstate of the observable. In the two-level-system
of polarization the eigenvalues of an observable are either +1 or -1 corresponding to the two
orthogonal eigenvectors. A visualization of the two-dimensional quantum state is provided
by the geometric representation of (2.1). Without any loss of generality it can be rewritten
as

|ψ〉 = cos
(
θ

2

)
|H〉+ eiϕ sin

(
θ

2

)
|V 〉 (2.2)

where an irrelevant global phase is omitted and θ ∈ [0, π], ϕ ∈ [0, 2π] are real numbers,
which can be identified with the angles of spherical coordinates [31]. Due to the homomor-
phism of the two-dimensional special unitary group SU(2) to O(3), any |ψ〉 ∈ H uniquely
maps to a point with coordinates (〈ψ|σ̂x|ψ〉, 〈ψ|σ̂y|ψ〉, 〈ψ|σ̂z|ψ〉) on the surface of the real
unit sphere in Euclidean space, the so-called Bloch sphere (see Fig. 2.2), where the Pauli
spin matrices are given by

σ̂x =
(

0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
. (2.3)

The polarization vectors |H〉 and |V 〉 are defined as eigenstates of the σ̂z operator and lie
on the upper and lower pole, respectively. On the equator one finds the eigenstates of the
σ̂x operator, namely |P 〉 and |M〉 corresponding to ±45◦ linear polarization, respectively,
and the eigenstates of the σ̂y operator, denoted by |R〉 and |L〉 for right and left circular
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polarization, respectively.

Figure 2.2: Bloch sphere from [12] as visualization of a two-level quantum state, which
can be expressed in terms of the eigenstates of the σ̂z operator, |H〉 and |V 〉,
as |ψ〉 = cos

(
θ
2

)
|H〉 + eiϕ sin

(
θ
2

)
|V 〉. The eigenstates of the Pauli matrices

σ̂x, σ̂y, σ̂z lie on the axes x, y, z respectively. Pure states reside on the surface
of the sphere, while mixed states lie within, with the completely incoherent
mixture in the center.

σ̂z|H/V 〉 = ± |H/V 〉 (2.4)

σ̂x|P/M〉 = σ̂x

(
1√
2

(|H〉 ± |V 〉)
)

= ±|P/M〉 (2.5)

σ̂y|R/L〉 = σ̂y

(
1√
2

(|H〉 ± i|V 〉)
)

= ±|R/L〉 (2.6)

In a two-level system any measurement operator can be built from a combination of the
identity operator I and the three Pauli operators. Not only for the considered polarization
model system, but for any two-level quantum mechanical system - also called qubit -
the Bloch sphere serves as a geometrical representation of the state space. The points
on the surface of the sphere correspond to the pure states of the system (completely
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polarized), whereas the interior points correspond to mixed states (partially polarized with
the unpolarized state in the center). The latter cannot be written in terms of the bra–ket
notation like pure states, but are expressed by means of the density matrix %̂, which is
capable of describing incoherent mixtures of quantum states. Its diagonal elements denote
the probabilities or populations of the respective states, while possible coherence terms are
off-diagonal.

2.1.2 Standard measurement process via indirect scheme

In practice the quantum system - in the following referred to as object system - is usually
measured indirectly by bringing it into interaction with a measurement device, what re-
sults in the so-called pre-measurement. The measurement device, hereafter named pointer
system, is then read off, i.e. projectively measured [24], [42]. One way to model such an
indirect measurement is based on the scheme by von Neumann, treating both, the object
and the pointer system, quantum mechanically, which effectively constitutes a projective
measurement of the object system for an ideal interaction. The Hilbert space of the total
system is then composed of the direct product Htotal = Hobject⊗Hpointer. The total Hamil-
tonian reads Ĥtotal = Ĥobject + Ĥpointer + Ĥint, where ’int’ is abbreviated for interaction.
For simplicity the evolution of the free Hamiltonians of the subsystems Ĥobject, Ĥpointer can
be neglected, if the interaction time is assumed to be small compared to the internal time
evolution of the respective subsystems, i.e. the interaction is instantaneous [26] [42]. Then
the object observable under study, say Â, does not change during the measurement, i.e.
[Â, Ĥint] = 0 [8].

General description

Let Â ∈ Hobject be the observable of interest, having discrete and non-degenerate eigenval-
ues. We choose some observables X̂ and M̂ of the pointer’s Hilbert space, which do not
commute with each other. This means [M̂, X̂] 6= 0, which in a given state is associated
with the uncertainty relation ∆M∆X ≥ 1

2 |〈[M̂, X̂]〉|, where ∆ denotes the standard de-

viation of the respective probability distributions, e.g. ∆X =
√
〈X̂2〉 − 〈X̂〉2. X̂ acts as

the input observable, being involved in the interaction, while M̂ is the output observable,
which is chosen to be read off thereafter. At time t = 0 the object system is prepared, i.e.
preselected, in the pure state |ψ〉 = ∑d

i=1 |ai〉〈ai|ψ〉 = ∑d
i=1 ci|ai〉, which is a superposition

of eigenstates of Â with d being the dimension of Hobject, while the initial pointer state is
given by |φ0〉, which is a superposition of eigenstates |mk〉 of M̂ .

The two independent subsystems then interact with each other during a small time
interval ε via a unitary time evolution operator Û(ε, 0) = exp

(
− i

~
∫ ε
0 dt Ĥint

)
, where the

integral may be substituted by εĤint since the impulsive interaction Hamiltonian is time
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independent. It is given by
Ĥint = gÂ⊗ X̂, (2.7)

with the real-valued interaction constant g. The joint initial state of the total system,
namely the uncorrelated product state |τ0〉, is transformed by Û according to [42]

|τ0〉 := |ψ〉 ⊗ |φ0〉
Û−→ Û (|ψ〉 ⊗ |φ0〉) = e−

iεg
~ Â⊗X̂

(
d∑
i=1

ci|ai〉 ⊗ |φ0〉
)

=
d∑
i=1

ci|ai〉 ⊗ e−
iεg
~ aiX̂ |φ0〉 =:

d∑
i=1

ci|ai〉 ⊗ |φi〉 =: |τ〉,

(2.8)

which constitutes the so-called pre-measurement, illustrated in Fig. 2.3. Here |φi〉 =
e− iεg~ aiX̂ |φ0〉 denote the pointer states, correlated to the system. As a consequence the
object and the pointer system are in an entangled state, i.e. they cannot be written as a
product state of two single states.

Object

Pointer

Û

ε
t

t=0

|ψ⟩

|φo⟩

|τo⟩ |τ⟩

σ

ρ

Figure 2.3: Standard measurement process in the indirect scheme. The object system cou-
ples to a pointer system via a unitary interaction Û , which lasts a small time
interval ε. Thereby the product state |τ0〉 is transformed to the entangled state
|τ〉, which means the systems are correlated. The pointer can then be read off
to extract information about the object observable.

In particular, each object state |ai〉 is correlated with a corresponding pointer state |φi〉,
which is in general not an eigenstate of the pointer operator M̂ , but a superposition of those.
The states |φi〉 are normalized, but in general they do not form a complete set in Hpointer.
The pointer system is now superposed proportional to the object system [9]. By taking the
partial trace of the total density matrix over the non-interesting degrees of freedom, one
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can obtain an expression for the state of each of the systems. The corresponding density
matrix of the joint state |τ〉 reads [42]

τ̂ = |τ〉〈τ | =
∑
i,j

(|ai〉 ⊗ |φi〉〈ai|ψ〉〈ψ|aj〉〈aj| ⊗ 〈φj|) =
∑
i,j

(
Λ̂ai|ψ〉〈ψ|Λ̂aj |φi〉〈φj|

)
(2.9)

with the abbreviation Λ̂ai = |ai〉〈ai|. From this the separate density matrix of the object
system %̂ is computed by summing over the pointer’s basis states [42]:

%̂ = Trpointer[τ̂ ] =
∑
k

〈mk|τ̂ |mk〉 =
∑
k,i,j

〈mk|φi〉Λ̂ai|ψ〉〈ψ|Λ̂aj〈φj|mk〉 =
∑
i,j

Λ̂ai|ψ〉〈ψ|Λ̂aj〈φj|φi〉

(2.10)
Thus, the system density matrix depends on a possible overlap of the pointer states 〈φj|φi〉,
which is the crucial element in the distinction of ideal and so-called weak measurements,
which is to be defined below.
The pointer density matrix is given by [42]

σ̂ = Trobject[τ̂ ] =
∑
i

〈ai|τ̂ |ai〉 =
∑
i

|φi〉〈ai|ψ〉〈ψ|ai〉〈φi| =
∑
i

|ci|2|φi〉〈φi|

with matrix elements 〈mk|σ̂|ml〉 =
∑
i

〈mk|φi〉|ci|2〈φi|ml〉 (2.11)

The readout is then performed by a projective measurement of M̂ via the projector
Λ̂mk = |mk〉〈mk| on the pointer system only, which yields an eigenvaluemk with probability
prob(mk) = Tr

[
(ÎS ⊗ Λ̂mk)τ̂

]
= ∑

i (|〈φi|mk〉|2 |〈ψ|ai〉|2) [42]. The probability distributions
of ai andmk will only be correlated uniquely if all pointer wave functions |φi〉 do not overlap.
According to the Heisenberg equations of motion the time-dependence of the expectation
value of M̂ is given by [8]

dM̂

dt
= i

~εgÂ[X̂, M̂ ]. (2.12)

Integrating and taking the expectation value of both sides of the equation yields

〈M̂〉 − 〈M̂〉0 = i
~εg〈Â〉〈[X̂, M̂ ]〉0, (2.13)

where the subscript 0 always denotes the initial state |φ0〉. As can be seen, the shift in
the expectation value of the output observable reveals the expectation value of Â in linear
dependence of εg. The outcome is real because the average value of a commutator of
two Hermitian operators must be imaginary [34], [18]. The pointer system can indeed be
seen as a measurement device for the observable Â because the probability distribution of
the pointer observable M̂ evolves proportional to the expectation value of Â. Due to the
entanglement, this local measurement on the pointer system will also influence the object
state. The back-action on its state again depends on the possible overlap of different
φi(mk)s [42].
After projecting the pointer system onto |mk〉 the composite state becomes un-entangled



2.1 Quantum mechanics 9

and reads [42]

|τ(|mk)〉 =
∑
i ci〈mk|φi〉|ai〉√

prob(mk)
⊗ |mk〉 (2.14)

This can also be understood in terms of the measurement operator Ω̂k = ∑
i〈mk|φi〉Λ̂ai ,

defined in the Hilbert space Hobject, acting on the object state |ψ〉. Thereby the joint state
can be rewritten as

|τ(|mk)〉 = Ω̂k|ψ〉√
〈ψ|Ω̂†kΩ̂k|ψ〉

⊗ |mk〉 (2.15)

where the product Ω̂†kΩ̂k is referred to as an element of a so-called positive-operator valued
measure. These operators are capable of modelling generalized measurements, involving
both unitary and non-unitary parts [50]. However, the further description will consider the
operations used above.

Canonically conjugate pointer observables

The observables of the pointer’s Hilbert space are often chosen to be canonically conjugate,
such as the operators of position Q̂ and momentum P̂ , which have continuous spectra.
We will consider one-dimensional free motion and position of particles, such as photons
in a laser beam, where the commutation relation reads [Q̂, P̂ ] = i~. P̂ replaces X̂ in
the interaction Hamiltonian and M̂ is substituted by Q̂, which we can identify with the
position of a pointer on a measurement device, indicating the measurement outcome on
a scale [8]. Likewise |mk〉 is substituted by |q〉, therewith the initial pointer state can be
expanded as [42]

|φ0〉 :=
∫

dq |q〉〈q|φ0〉 =
∫

dq |q〉φ0(q) with φ0(q) =
 1√

2πσ2
q

e
− q2

2σ2
q

 1
2

, (2.16)

for simplicity chosen to be a real-valued wave function Its probability density |φ0(q)|2 is a
Gaussian distribution centred around 0 with the standard deviation σq. For this specific
choice of wave function σq coincides with the standard deviation of the position operator
∆Q. According to the uncertainty relation, which is minimal for Gaussian wave packets,
the momentum operator has a standard deviation of ∆P = ~

2∆Q , equal to the standard
deviation σp of its Gaussian probability density |φ0(p)|2. The entangled state after the
unitary transformation from Eq. (2.8) can be rewritten as [42]

|τ〉 = e−
iεg
~ Â⊗P̂

∫
dq

d∑
i=1

ci|ai〉 ⊗ φ0(q)|q〉 =
∫

dq
d∑
i=1

ci e−
iεg
~ aiP̂ |ai〉 ⊗ φ0(q)|q〉

=
∫

dq
d∑
i=1

ci|ai〉 ⊗ φ0(q − εgai)|q〉 =
∫

dq
d∑
i=1

ci|ai〉 ⊗ φi(q)|q〉. (2.17)
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where φi(q) =
 1√

2πσ2
q

e
− (q−εgai)

2

2σ2
q

 1
2

are the correlated pointer states, corresponding to

different ai. The last step in the Eq. (2.17) comes about because P̂ generates translations
in the complementary Q̂ space. The corresponding probability density of q is

prob(q) = 1√
2π(∆Q0)2

d∑
i=1
|ci|2 e−

(q−εgai)
2

2(∆Q0)2 (2.18)

which is a superposition of d Gaussian distributions. Its expectation value in state σ̂ is
given by [42]

〈Q̂〉 =
∫

dq q prob(q) = 〈Q̂〉0 + εg〈Â〉 (2.19)

As a consequence of the pre-measurement it is shifted by εg〈Â〉 with respect to the initial
one, which - although assumed zero in our case - appears in the equation for the sake of
completeness. Therefore, a measurement of Q̂ on the pointer system via some projector
|q〉〈q| will reveal information about the system observable Â. The variance of the position
operator in this state is given by [42]

Var(Q̂) = (∆Q)2 = 〈Q̂2〉 − 〈Q̂〉2 = 〈Q̂2〉0 − 〈Q̂〉20 + ε2g2
(
〈Â2〉 − 〈Â〉2

)
= Var(Q̂)0 + ε2g2 Var(Â) = (∆Q0)2 + ε2g2(∆A)2, (2.20)

where the spread is quadratically dependent on εg. These results are exact and hold for
arbitrary values of εg and ∆Q0. Note, that the corresponding quantities for the momentum
operator stay unchanged by this standard measurement scheme.

Ideal setting

An ideal measurement of Â is considered projective and complete, in the sense that the
state before and after the measurement are independent from each other. To be resembled
by the indirect measurement scheme via a pointer system the pointer states φi should be
mutually orthogonal in Hpointer, i.e., 〈φi|φj〉 → 0 for i 6= j with i, j ∈ [1, d], which implies
that the dimension of the pointer system has to fulfil dpointer ≥ d. In this case the pre-
measurement assigns every basis state |ai〉 of the object superposition state, corresponding
to a non-degenerate eigenvalue of Â, in a unique way to a pointer state |φi〉 [42]. As
can be seen from Eq. (2.10) the object’s density matrix %̂ then has diagonal elements only,
which signifies a completely incoherent, i.e., mixed superposition state. Because there is no
overlap between different pointer wave functions φi〉, the associated probability distribution
contains spatially separated peaks corresponding to the eigenvalues of the observable Â.
Due to this one-to-one correspondence of the distributions the probability to obtain an
eigenvalue ai is therefore only dependent on the initial object state |ψ〉, in particular |ci|2,
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which requires the following relation to be fulfilled [24]:

ε|g|
~ δa∆X0 � 1 (2.21)

with δa being the minimal distance between the different eigenvalues ai. This means that
the coupling is sufficiently strong and that the initial pointer uncertainty in X̂ space is
large. Only then the pre-measurement can distinguish between separate eigenvalues ai.
Under these conditions the indirect measurement has the same consequences for the object
system as an ideal projective measurement, i.e., the object system will ’collapse’ into one
of its eigenstates [42]. To obtain the resulting expectation value the outcomes ai of many
measurements, i.e. measurements on many identically prepared object-pointer systems are
averaged [18]. This case is also referred to as strong measurement to distinguish it from
the non-ideal and in particular weak ones.

|V⟩

|H⟩
|P⟩

Figure 2.4: Schematic illustration of a realization of an ideal measurement in the indirect
scheme. A birefringent element couples the object observable, here the σ̂z op-
erator, to the momentum of the pointer system. The deflection is different for
each polarization component, |H〉 and |V 〉, which results in a spatial separa-
tion between them. As a consequence of this interaction the polarization is
correlated with the spatial degree of freedom.

Example a) If Â is represented by σ̂z with |ψ〉 is given by Eq. (2.1), the entangled state
reads [42]

|τ〉 =
∫

dq [a|H〉 ⊗ φ(q − εg) + b|V 〉 ⊗ φ(q + εg)] |q〉 (2.22)
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The expectation value of Q̂ in this state is given by 〈Q̂〉 = εg (|a|2 − |b|2). Fig. 2.4
schematically illustrates an experimental realization of an ideal measurement with a = b =

1√
2 , i.e. the preselected state is |P 〉.

Weak setting

In general the pointer states are not mutually orthogonal, which means that condition 2.21
is not fulfilled and the indirect measurement will not result in an ideal projective, strong
measurement of the object observable Â. By contrast, weak measurements, as the name
indicates, do not merely avoid collapsing the object state, but rather disturb the object
system as little as possible. The condition for a non-ideal measurement to be weak can be
formulated as

ε|g|
~

∆A∆X0 � 1. (2.23)

, In this case, the coupling strength together with the initial standard deviation of the
pointer position is required to be very small, with reference to the spacing of the eigenvalues
of Â. Under these conditions a Taylor series expansion of the unitary transformation, in
the following approximated to terms of second order, is valid [42]:

Û = e− i
~ εgÂ⊗X̂ ≈ I− iεg

~
Â⊗ X̂ − ε2g2

2~2 (Â⊗ X̂)2 (2.24)

The approximation makes sense when the initial pointer wave function in X̂ space vanishes
sufficiently fast for large values. Together with the simplifying assumption that 〈X̂〉0 = 0
the overlap of the different, evolved pointer states in this limit is given by [42]

〈φi|φj〉 ≈ 1− ε2g2

2~2 〈X̂
2〉0(ai − aj)2 (2.25)

which means, there is almost total overlap. Consequently the correlations between object
and pointer states are not in one-to-one correspondence. This means that the dimension
of the pointer system dpointer does not have to be greater than the one of the object system
d, in particular it can be smaller. This can be exploited by choosing a pointer with simple
structure, i.e., with few dimensional degrees of freedom to measure and is especially useful
for obtaining the mean value of the probability distribution of an object system with
unbounded spectrum of eigenvalues [35]. Inserting Eq. (2.25) into the object’s density
matrix in Eq. (2.10) underlines that its elements change only very little by the weak
unitary interaction with the pointer system, to be exact on the order of O(ε2g2), meaning
that the coherence of the state is largely maintained. Although the shift in 〈M̂〉 on the
order of O(εg) is formally the same as for the ideal case, under weak conditions it is much
smaller than the uncertainty of M̂ and, thereby, not resolvable by a single measurement.
Moreover, with the off-diagonal elements of the object’s density matrix, that give rise to
interference effects, the profile of the probability distribution of M̂ changes compared to
the strong case.
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Figure 2.5: Shown is the probability distribution for a strong and a weak measurement.
a) The former manifests itself in distinct peaks at the eigenvalues ±1 of the
observable, if the axis is scaled appropriately. The standard deviation in this
case is ∆ = 0.1, which is parametrized as ∆ =

√
2∆Q0. b) Distribution re-

sulting from a weak interaction, where the standard deviation given here is 10.
c) It is reduced to 10/

√
5000 ≈ 0.14 with an ensemble of N = 5000 particles.

Figure modified from [10].
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This can be seen by expanding the exponential factor to first order in the explicit ex-
pression of Eq. (2.18), where the interaction caused a superposition of position shifts.
Although P̂ has an unbounded spectrum, the approximation makes sense, provided φ(p)
vanishes fast enough for large values of p, which is fulfilled by a Gaussian wave function.
If we take into account Eq. (2.23), which implies that ε|g|∆A� ∆Q0, then [43]

prob(q) ≈ 1√
2π(∆Q0)2

d∑
i=1
|ci|2

(
1− (q − εgai)2

2(∆Q0)2

)
≈ 1√

2π(∆Q0)2
e−

(q−εg〈Â〉)2

2(∆Q0)2 (2.26)

which means the superposition of substantially overlapping Gaussians may be approxi-
mated by a single Gaussian centred around εg〈Â〉. This corresponds to the initial wave
function, shifted by this value, namely:

φ0(q)→ φ1(q) ≈ φ0(q − εg〈Â〉). (2.27)

A certain outcome of a single measurement on one object-pointer system, i.e. particle,
provides almost no information because one does not know if the deviation of the outcome
from the initial expectation value is due to its original standard deviation ∆Q0 or due to the
shift according to the spectral distribution of eigenvalues of Â. If, however, a large number
N of identically prepared object-pointer systems is used, the overall standard deviation
reduces according to ∆Q0√

N
so that the expectation value may be obtained by statistical

averaging to an accuracy of O( 1√
N

) [10], [45].
Example b) This can be seen by means of the example in Fig. 2.5, which shows the

probability distribution in Q̂ space for Â = 1√
2 (σ̂x + σ̂z) and |ψ〉 = |P 〉, i.e. plus-polarised.

The eigenvalues of this operator take the values ±1. In the strong case a) there are two
distinct peaks at the locations of the respective eigenvalue, where the positive eigenstate is
more probable. When the interaction is weak, which is accomplished here by an increased
∆Q0, the distribution is located at the expectation value 1√

2〈P |σ̂x + σ̂z|P 〉 = 1√
2 in case

b). However the shift is not resolvable from the background, unless a high amount of
object-pointer systems is used as in c) [10].
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2.2 Optics
This section addresses the optical processes which are employed in the realization of the
experiment. For a comprehensive description of photonic system it is referred to standard
optic textbooks [39, 30].

2.2.1 Laser operating principle
The operation principle of a laser, which is the acronym for ’light amplification by stim-
ulated emission of radiation’, are shortly reviewed. A laser is essentially composed of an
optical resonator containing an optical amplifier, i.e. an active medium [39]. For operation
a third component is needed, as can be seen in Fig. 2.6: an energy source sufficiently
excites the active medium via a pumping mechanism over a certain threshold value, such
that there arises a population inversion in the energy level system of the active medium.
Spontaneous decays into the lower energy level produce incoherent photons emitting in all
directions, which is called spontaneous emission. The mirrors of the resonator selectively
reflect photons back into the active medium, what is referred to as positive feedback [30].
These may then primarily stimulate directed emission of secondary photons resulting in an
amplification of radiation along the resonator. The stimulated energy transitions above the
lasing threshold result in the gain spectrum of the medium, whose maximum defines the
central wavelength of the laser [30]. The amplification combined with the positive feedback
results in coherent oscillation, which is partly outcoupled through one of the mirrors of
the resonator [39]. Under steady-state conditions, where the gain equals the losses in the
system, the population difference saturates and the photon flux grows linearly with the
pumping rate [39].
The oscillation between the reflecting mirrors manifests itself via transverse and longi-

tudinal resonant modes, with characteristic mode numbers. The longitudinal distribution
of the electric field forms standing waves, determined by the geometry and the reflectivity
of the mirrors [30]. The free spectral range, i.e., the distance between adjacent resonator
modes becomes [39]

∆νFSR = c

2l (2.28)

where l is the optical length of the resonator. Longitudinal modes are defined by the same
optical path length within the resonator, but differ from each other in their wavelength
resulting from different numbers of nodes n [1]. Only those within the gain spectrum of
the medium may oscillate. As the medium’s spectral bandwidth is much broader than the
mode spacing, multiple modes may compete for oscillation.
The transversal distribution of the electric field arises from diffraction due to the finite

lateral size of the resonator [1]. Depending on the geometry of the resonator the characteris-
tic distributions are described by different Laguerre-Gaussian modes (cylindrical symmetry
characterized by radial and angular node numbers) or different Hermite-Gaussian modes
(rectangular symmetry characterized by horizontal and vertical node numbers). As differ-
ent transverse modes exhibit slightly different effective path lengths inside the resonator,
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Figure 2.6: Laser components from [30]. An amplifying material placed inside an optical
resonator builds up an optical oscillator, when supplied with a pumping en-
ergy source. Light is reflected back and forth between the mirrors, where one
is highly reflecting, denoted by MHR in the figure, while the other one is less
reflective and therefore used for out-coupling the beam, denoted by MOC. Be-
neath there is a schematic of the longitudinal distribution of the electric field
forming standing waves.

they also slightly differ in their associated longitudinal modes [1]. In the following we
will be concerned with the fundamental transverse mode TEM00, namely the transverse
electromagnetic mode where both node numbers are zero, which results in a Gaussian
distribution.

2.2.2 Diode laser with external optical resonator
In the following we restrain the discussion to compact semiconductor lasers, i.e. diode
lasers, where the pumping is conducted by means of electric current. A typical model is
depicted in Fig. 2.7.
There the gain medium comprises a highly doped p-n-junction at which recombination

processes of electrons and holes spontaneously emit photons [30]. The current, at which the
minimum population difference of electron hole pairs is achieved, such that the stimulated
emission of photons becomes the dominant process is called the threshold current to initiate
lasing. The confinement of charge carriers and photons to the active or junction plane may
be achieved by an index-guided structure, involving different refractive indices [39]. The
spatial confinement selects a single, i.e. the fundamental transverse mode of oscillation.
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Figure 2.7: Diode laser from [41] showing the typical structure involving components such
as the semiconductor diode, which is connected to wires, encompassed by a
heat sink inside a casing.

The back and the front facets of the laser diode serve as mirrors.

Longitudinal mode selection

Even if the laser operates in a single Gaussian transverse mode, it may still oscillate on
multiple longitudinal modes. To select a single longitudinal mode an external dispersive
element, e.g. a diffraction grating, is placed in the path of the output beam. The multi-
frequent beam is diffracted according to its wavelengths. In the Littrow configuration,
which is shown in Fig. 2.8, the first diffraction order is fed back into the laser diode,
while the zeroth order is coupled out as the actual beam. Then the external resonator
dominates the feedback over the internal one of the laser diode. According to Eq. (2.28) a
longer resonator length means a shorter free spectral range, what may cause mode hops. If,
however, the grating is well aligned such that primarily only one frequency is fed back, the
laser oscillates in a single longitudinal mode. Additionally its spectral linewidth decreases
with the square of increasing external resonator length and therefore its coherence increases
[40].
The various spectra involved to select a longitudinal mode are shown in Fig. 2.9. The

net amplification for a selected mode arises from the semiconductor gain, the diffraction
dispersion as well as the internal and external cavity interference [27]. In this way the
wavelength of the output beam may be selected and tuned across the gain profile of the
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Figure 2.8: External optical resonator in the Littrow configuration from [40]. The laser
beam is outcoupled from the laser diode and reaches the diffraction grating
after passes a lens. The first diffraction order is coupled back into the laser
diode, such that the feedback from the external resonator, whose length is
denoted by LEXT in the figure, dominates over the feedback from the internal
diode resonator, whose length is given here as LD. The zeroth diffraction order
is used as the actual beam.

semiconductor material.

2.2.3 Beam characteristics

One of the most important characteristics of the output laser beam is its coherence, which
is the basis of interference effects.

Spatial coherence

The highest spatial coherence is achieved for the fundamental transverse mode (TEM00)
providing the highest beam quality. This involves in particular the focus and collimation
properties of the beam, where the beam exhibits only low divergence. The electric field
amplitude of a Gaussian beam travelling in z-direction takes the form

E(x, y, z) = A(x, y, z) e−ikz = A1

q(z) e−ik
r2

2q(z) e−ikz (2.29)

The complex envelope A(x, y, z) satisfies the slowly varying envelope approximation of the
wave equation [39]. That is, A(x, y, z) changes much slower in z direction than it does in
x and y direction, where r2 = x2 + y2. Here A1 is a constant and q(z) denotes the complex
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Figure 2.9: Shown are the various frequency-selective elements of a diode laser at a central
wavelength of 780 nm: semiconductor diode gain, the diffraction grating, the
internal and external resonator, which is called cavity here. The combined gain
resulting from those factors defines the selected longitudinal mode. The figure
represents a misaligned external resonator because two external cavity modes
are similarly amplified, which will cause multi-mode operation. Figure from
[27]

q-parameter, whose inverse comprises amplitude and phase parts according to:

1
q(z) = (z + iz0)−1 = 1

R(z) − i
λ

πW 2(z) (2.30)

R(z) denotes the wave front radius of curvature. The definition of the other two parameters
refer to the respective intensity distribution I = |E(x, y, z)|2: The beam width, which is
dependent on the z direction, is called W (z), where W0 is the waist radius. The Rayleigh
length z0 indicates the distance from the beam waist position over which the waist diameter
2W0 has diverged by a factor of

√
2, as shown in Fig. 2.10. The quantities are defined as

R(z) = z

(
1 + z2

0
z2

)
, (2.31)

W (z) = W0

√
1 + z2

z2
0
, (2.32)

z0 = πW0
2

λ
. (2.33)
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depth of focus

Figure 2.10: Width of the Gaussian beam from [51]. The beam width W (z) is smallest at
the waist position z = 0. The Rayleigh length z0 is defined as the distance,
where the beam radius has diverged by a factor of

√
2 from its minimal value

W0. The range of 2z0 around the waist position is sometimes denoted the
depth of the focus.

Substituting (2.30) in (2.29) yields

E(x, y, z) = A0
W0

Wz

e−
r2

W2(z) e−ikz−ik
r2

2R(z) +iγ(z) (2.34)

where A0 is abbreviated for A1
iz0

and γ(z) = tan−1
(
z
z0

)
is a function describing the phase

retardation at the beam axis with reference to a plane wave [39]. The corresponding
intensity results in

I(r, z) = I0
W 2

0
W 2(z) e−

2r2
W2(z) (2.35)

with I0 = |A0|2. In total the Gaussian beam is completely specified by its direction, its
waist location, A0 and either W0 or z0 [39].

The wave front normals of a collimated beam may be considered as paraxial rays [39].

The Gaussian wave function in section 2.1.2 was for simplicity chosen real-valued, which
is an approximation for the beam near the center. The waist radius is connected to the
standard deviation of its probability distribution via W0 = 2∆Q0.
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Temporal coherence

The coherence time is related to the coherence length lc by τc = lcn
c with the velocity of

light c inside a medium with refractive index n [30]. It specifies the time over which the
phase of the beam stays longitudinally correlated [16]. The coherence length is inversely
proportional to the linewidth of the beam spectrum, in particular its full width at half
maximum (FWHM) is given by [30]:

|∆λFWHM| =
2
√

2 ln(2)
π

λ2
peak

lc
(2.36)

The selection of a longitudinal mode results to a good approximation in monochromatic ra-
diation or more precisely in a small spectral linewidth. This means high spectral coherence,
which therefore also amounts to high temporal coherence.

2.2.4 Propagation in anisotropic media

Anisotropic media are asymmetrical regarding their dielectric properties [19]. This makes
the propagation of light or rather the pointing vector ~S, along which the photon energy
travels, dependent on its polarization. If the anisotropic medium is otherwise linear, the
induced electrical polarization reads

~P (ω) = ε0χ̂(ω) ~E(ω) with χ̂ =

χ11 χ12 χ13
χ21 χ22 χ23
χ31 χ32 χ33

 (2.37)

with ε0 the vacuum permittivity and χ̂ being the electric susceptibility of the material
[19]. Unlike in an isotropic medium the electric susceptibility is not a scalar, but a tensor.
Therefore in anisotropic media the induced polarisation ~P is in general not parallel to the
electric field vector ~E. With this likewise the electric displacement field ~D, given by

~D = ε0 ~E + ~P = ε0(1 + χ̂) ~E = ε0ε̂r ~E (2.38)

with ε̂r the relative permittivity of the material, is in general not parallel to ~E.

Dichroism

One anisotropic effect is dichroism. It describes the property of selective absorption of one
linear polarization component along an axis distinguished by the dichroitic material. This
means the electric susceptibility is not real-valued in that direction, because the imaginary
part causes absorption. The perpendicular direction is hardly absorbed, but gets almost
fully transmitted. This is exploited in polarisers, where a substrate containing a thin wire
grid absorbs the polarisation along that direction [19]. The transformation matrix of a
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linear polariser with the tilting angle θ starting from the horizontal position reads

T̂Polariser(θ) =
(

cos2(θ) cos(θ) sin(θ)
sin(θ) cos(θ) sin2(2θ)

)
(2.39)

Birefringence

As the principle of birefringence plays a central role in the experiment presented in this
thesis it is described in more detail. Here it is classified into linear and circular birefrin-
gence.
Linear birefringence
The principle of birefringence is caused by the fact that in anisotropic media there exist
two allowed oscillation directions of ~D for a given wave vector ~k [19]. The latter is per-
pendicular to the wave front, which describes surfaces of constant phase. Likewise there
exist two possible directions of ~E and - perpendicular to them - ~S, which describes the
direction of the group velocity vg. The phase velocity of a wave packet vph is determined
by the polarization direction, such that

vph = ω

k
= 1
√
µ0D

. (2.40)

Hence, the index of refraction
n = c

vph
= D
√
ε0

(2.41)

is dependent on the direction of the wave vector and has two possible solutions, sometimes
denoted by nfast and nslow, referring to the different values of the phase velocity [19]. The
polarization vectors ~D of these two modes are orthogonal to each other [14]. For the further
discussion we will focus on uniaxial materials. They exhibit one line of symmetry, namely
the optical axis. By suitably transforming the coordinate system the relative permittivity
then has two different components. Light with its electric field in a plane perpendicular to
the optical axis will experience the component perpendicular to the optical axis εr⊥. This
is referred to as ordinary beam because it is refracted ordinarily according to Snell’s law
of refraction with n = no, where the subscript o means ordinary. no is not dependent on
the direction of the wave vector.
Light that has its electric field in a plane, which contains the optical axis, will be affected

by εr⊥ as well as the parallel component εr‖ and therefore see both, no and ne, where the
subscript e denotes extraordinary. It is given by

n = ne(ϑ) = none√
no2 sin2(ϑ) + ne2 cos2(ϑ)

(2.42)

where ϑ denotes the angle between ~k and the optical axis [14]. The corresponding beam
is called extraordinary.
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Huygens principle, where wave fronts are illustrated as circles, is not appropriate here as
elementary waves have to be described by ellipses, which is illustrated in Fig. 2.11. Their
envelope is parallel to the incident envelope, but the direction of propagation ~S, i.e. the
energy flux, is changed. As a result ~k and ~S are not parallel.

Figure 2.11: Illustration of linear birefringence from [19], where ’optische Achse’ means
optical axis. a) shows the ordinary case, where wave fronts can be described
with circles. As the incidence is normal to the surface there is no refraction.
In case b) the vectors ~D and ~E are not parallel and so are ~S and ~k. This
means that the energy travels in a different direction than the wave fronts,
which have to be described by ellipses. This is called extraordinary refraction.

A uniaxial material is called positive when the extra-ordinary beam is the slow beam,
while the ordinary is the fast one, i.e. the extra-ordinary index of refraction is greater
than the ordinary. For a negative uniaxial medium it is vice versa [14]. The measure
for birefringence is commonly expressed in the maximal difference of extra-ordinary and
ordinary refractive index.
For the special case, when the propagation, i.e., the wave vector ~k, is parallel to the

optical axis of a crystal (ϑ = 0), the two solutions for ~D are degenerate. This means ~D
and ~E are parallel for the extraordinary beam and so are ~k and ~S. Like in isotropic media
the refractive index is not dependent on the direction of the wave vector, i.e. it can lie
anywhere in the plane perpendicular to ~k and is given by no. That is, the degenerate
ordinary beams are solely governed by Snell’s law.
For the case when ~k is perpendicular to the optical axis (ϑ = 90◦) the extraordinary

beam propagates at a different phase velocity, corresponding to the refractive index ne,
but ~E and ~D are parallel for the extra-ordinary beam and so are ~k and ~S [14].
A schematic to illustrate this is depicted in Fig 2.12, where the optical axis is in the

surface plane of crystal. It is expressed in terms of the angle of incidence of the beam θ
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and the respective refraction angles θ(o) and θ(e). The latter are each determined by Snell’s
law according to sin(θ) = no sin(θ(o)) = ne sin(θ(e)), if incident from air with n = 1. With a
crystal thickness d the separation distance δx of the ordinary and the extraordinary beam
becomes:

δx = δxe − δxo = d

(
sin(θ − θ(e))

cos(θ(e)) − sin(θ − θ(o))
cos(θ(o))

)
(2.43)

where δxo and δxe are the respective beam displacements with reference to the original
beam axis.

θ

θe

θo

δ�o
δ�e

d

cry
st

al

(Y
VO4)

optical axis

Figure 2.12: Schematic birefringence for the case when ~E and ~D are parallel. The beam is
incident on a positive birefringent crystal from a medium with lower refractive
index (air), such that ~k is perpendicular to the optical axis. The polarization
of the ordinary beam is horizontal, i.e. in the plane of incidence, while the
extraordinary beam is vertically polarised. The refraction can in both cases be
described by Snell’s law with refractive indices no and ne. The resulting angles
θe and θo are different, in particular the extra-ordinary beam is refracted more
towards the crystal normal than the ordinary one. Therefore the displacements
δxo and δxe are different.

The connection to the quantum mechanical description, in particular to the interaction
Hamiltonian, where Â is σ̂z with eigenvalues +1 and −1 with respect to horizontal and
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vertical polarization state may explicitly be expressed [47] by:

δx = 2gε (2.44)

where each side of the equation are indicators of the strength of the interaction. Here
the time ε is assumed equal for both polarization components. Note, however, that the
mean displacement of the whole beam δxe+δxo

2 is not readily accounted for in the theoretical
model.

The refractive indices ne and no are dependent on the wavelength of the incident beam.
The Sellmeier equation provides a good approximation for most optically transparent media
[39]. For a birefringent crystal called yttrium orthovanadate (YVO4) at room temperature
it reads [13],[51]

ne
2(λ) = 4.59905 + 0.110534

λ2 − 0.04813 − 0.0122676λ2

no
2(λ) = 3.77834 + 0.069736

λ2 − 0.04724 − 0.0108133λ2 (2.45)

where λ is in units of µm. The two components of polarization propagate with different
phase velocities. Notable, even for perpendicular beam incidence (θ = 0), where there is no
refraction, the phase relation between ordinary and extraordinary beam changes according
to the difference ∆n = ne − no

∆ϕ = 2π d
λ

∆n. (2.46)

Therefore, the overall polarization state changes during propagation and is different after-
wards than beforehand, unless ∆ϕ is an integer multiple of 2π.

This is exploited for wave plates, where the phase is delayed between two linear polar-
ization directions dependent on its thickness d. Commonly used are quarter-wave plates
(QWP) and half-wave plates (HWP), where the phase is shifted by π

2 and π, respectively.

The transformation matrix of a HWP is given by [22]

T̂HWP(θ) =
(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
= sin(2θ)σ̂x + cos(2θ)σ̂z, (2.47)

For θ = 22.5◦ the HWP operation reads 1√
2 (σ̂x + σ̂z). A QWP transforms according to

T̂QWP(θ) =
(

cos2(θ)− i sin2(θ) (1 + i) sin(θ) cos(θ)
(1 + i) sin(θ) cos(θ) −i cos2(θ) + sin2(θ)

)

= 1
2((1− i)I + 2(1 + i) cos(θ) sin(θ)σ̂x + (1 + i) cos(2θ)σ̂z). (2.48)
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The corresponding transformation matrix for the YVO crystal itself is given by

T̂YVO(ϕ) =
(
i cos(ϕ2 ) + sin(ϕ2 ) 0

0 i cos(ϕ2 )− sin(ϕ2 )

)

= i cos
(
ϕ

2

)
I + sin

(
ϕ

2

)
σ̂z (2.49)

Circular birefringence
Circular birefringence, also called optical rotation, amounts to the rotation of incident
linear polarized light, irrespective of its polarization direction. The angle of rotation α is
proportional to the path length, i.e. the thickness of the material d:

α = αs · d (2.50)

where αs is called specific rotation [19]. Analogously to the linear birefringence, which
induces two orthogonal linearly polarized wave packets travelling with different phase ve-
locities, circular birefringence induces two orthogonal circularly polarized wave packets
travelling with different phase velocities. This may be understood due to the fact that
linear polarization can always be written as a superposition of right and left circular po-
larization. When exiting the circular birefringent material, the decomposed beams, whose
electric field vectors rotated by unequal amounts inside, recombine to a linearly polarized
wave packet, whose polarization direction is rotated according to α [2]. Analogously, the
measure for circular birefringence is expressed in the difference of the two refractive indices.
The effect of circular birefringence may either be an intrinsic property of the material,

which is then called optical activity. Or it may be induced in a material by an exter-
nal static magnetic field, parallel to the propagation direction of the light, which is then
called Faraday effect. In the above expression the specific rotation is then replaced by a
factor containing the magnetic field. This phenomenon is for example exploited in optical
isolators.

2.3 Suitable measures

The essence of this work is the comparison of different quantum states, which is experimen-
tally realized by bringing them to interference. To connect the resulting classical intensity
modulation with an expression for the distance measure of two quantum states, the fol-
lowing relations are needed.
Visibility
The visibility V is a measure of the interference strength

V = Imax − Imin
Imax + Imin

(2.51)
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where Imax and Imin are the extremal values of the sinusoidal intensity signal, which arises
by varying the phase difference of the two interfering arms [39].

Fidelity
The fidelity F serves as a measure for the spatial proximity of two quantum states in
Hilbert space and may be given by

F (ρ1, ρ2) = tr
(√√

ρ̂1ρ̂2

√
ρ̂1

)
(2.52)

The quantity is symmetric in its input arguments, non-negative and smaller than or for the
case ρ̂1 = ρ̂2 equal to one. Furthermore it is invariant equal under unitary transformations,
i.e. F (Û ρ̂1Û

†, Û ρ̂2Û
†) = F (ρ̂1, ρ̂2) [31]. If the reference state is a pure state |Ψ〉, the

expression simplifies to

F (|Ψ〉, ρ̂2) = tr
(√
〈Ψ|ρ̂2|Ψ〉|Ψ〉〈Ψ|

)
=
√
〈Ψ|ρ̂2|Ψ〉. (2.53)

Thus, the fidelity is the square root of the transition probability and therefore equal to
the overlap between the states |Ψ〉 and ρ̂.
Bures angle
While the fidelity itself is not a metric on the state space of density matrices, we can
use purification and Uhlmann’s theorem to see that a related definition, the Bures angle,
provides a metric. Purification describes a mathematical technique, which allows to relate
mixed states to pure states. A given density matrix ρ̂A of a quantum system A may be
written in terms of a pure state |AB〉 of a composed system AB, i.e. ρ̂A = trR(|AB〉〈AB|),
where B is a virtual external system. By taking only system A into account one is left
with the original mixed state [31].
Furthermore we use Uhlmann’s theorem, for which ρ̂1 and ρ̂2 are mixed states of a

quantum system A, with purifications |Ψ1〉 and |Ψ2〉 via a system B, respectively. Then

F (ρ̂1, ρ̂2) ≥ |〈Ψ1|Ψ2〉| (2.54)

with equality for
F (ρ̂1, ρ̂2) = max

|Ψ1〉,|Ψ2〉
|〈Ψ1|Ψ2〉| (2.55)

where the maximization is over all purifications |Ψ1〉 and |Ψ2〉 into AB [31]. The fidelity
between two mixed states equals the maximal overlap of respective purifications.
Using the fidelity, the angle between two vectors in Hilbert space, the Bures angle, may

be defined as
DA(ρ̂1, ρ̂2) = arccos (F (ρ̂1, ρ̂2)) . (2.56)

By Uhlmann’s theorem one can verify that this quantity fulfils the triangle inequality.
Furthermore it vanishes if ρ̂1 = ρ̂2. Together with symmetry and non-negativity the Bures
angle is a metric [31].
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Connecting the quantities for interference experiment
For relating the visibility to the fidelity and therefore the Bures angle, let’s first assume
not-normalized states, such that 〈U1|U1〉 = I1 and 〈U2|U2〉 = I2 [39]. Interference of the
two states yields the intensity modulation

I = (〈U1|+ 〈U2|) (|U1〉+ |U2〉) = 〈U1|U1〉+ 〈U2|U2〉+ 〈U1|U2〉+ 〈U2|U1〉
= I1 + I2 + 2 Re(〈U1|U2〉) = I1 + I2 + 2|〈U1|U2〉| cos ζ. (2.57)

Imax and Imin are the extremal value of I when the relative phase ζ is varied. Inserting
these values into Eq. (2.51) results in

V = 2
√
I1I2

I1 + I2

∣∣∣∣∣∣ 〈U1|U2〉√
〈U1|U1〉

√
〈U2|U2〉

∣∣∣∣∣∣ = 2
√
I1I2

I1 + I2
|〈Ũ1|Ũ2〉| (2.58)

where |Ũ1〉 and |Ũ2〉 are the normalized wave functions. If the intensities are equal, i.e.,
I1 = I2, it reduces to

V = |〈Ũ1|Ũ2〉|, (2.59)
which is equal to the fidelity of these states. Note that |Ũ〉 may also represent a purification
of a density matrix ρŨ . In this case the maximal visibility is equal to the fidelity if the
purification states are maximized.
Therefore the resulting relation is defined as

DA(ρ̂1, ρ̂2) = arccos (Vmax) . (2.60)



3 Properties of weak values
In the following the concept of weak values will be introduced, from the main idea and
general considerations to its major application and associated interpretational issues. To
elaborate on its properties, in particular its differences and similarities to the standard
- preselected only - measurement scheme, its behaviour will be compared with that of
ordinary quantities, as expectation values and eigenvalues, where the proximity of the
respective pointer states serves as criterion for similarity.

3.1 Main Idea
The weak value was introduced in the framework of a weak measurement, where post-
selection onto a particular state of the object’s subspace is added, before reading off the
pointer, which is depicted in Fig. 3.1.

Object

Pointer

Û

ε
t

t=0

|ψ⟩

|φo⟩

|τo⟩ |τ⟩ |τw⟩

|φw⟩

|φ⟩

Figure 3.1: Pre- and postselected measurement scheme

Therefore all assumptions from section 2.1.2 apply here, too. After the pre-measurement,
which evolved object and pointer system into the entangled state |τ〉 = ∑ds

i=1 ci|ai〉 ⊗
e− iεg~ aiX̂ |φ0〉 = ∑ds

i=1 ci|ai〉 ⊗ |φi〉, the object’s subspace is projected onto |ϕ〉 = ∑ds
i=1 c

′
i|ai〉,

which is not orthogonal to the objects initial state |ψ〉. Due to the correlation between the
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systems this also changes the pointer state, such that the resulting dis-entangled product
state reads

|τw〉 = (Λ̂ϕ ⊗ Î)|τ〉 = |ϕ〉 ⊗ |φw〉 (3.1)

where the pointer state, up to the normalization constant N = 1/
√

prob(ϕ|τ), can be
expanded and approximated as

N−1|φw〉 =
ds∑
i=1

c′∗i ci|φi〉 =
ds∑
i=1
〈ϕ|ai〉〈ai|ψ〉

[
Î − iεg

~ aiX̂ +
∞∑
r=2

(−iεgaiX̂/~)r
r!

]
|φ0〉

= 〈ϕ|ψ〉
[
1− iεg

~ AwX̂ +
∞∑
r=2

(−iεgX̂/~)r
r! (Ar)w

]
|φ0〉

= 〈ϕ|ψ〉
[
e−

iεg
~ AwX̂ +

∞∑
r=2

(−iεgX̂/~)r
r! ((Ar)w − (Aw)r)

]
|φ0〉 ≈ 〈ϕ|ψ〉 e−

iεg
~ AwX̂ |φ0〉

(3.2)

neglecting the second term in the last step [45]. Here

(Ar)w =
∑ds
i=1 c

′∗
i cia

r
i∑ds

i=1 c
′∗
i ci

= 〈ϕ|Â
r|ψ〉

〈ϕ|ψ〉
with the quantity Aw = (A1)w = 〈ϕ|Â|ψ〉

〈ϕ|ψ〉
(3.3)

named the weak value of the observable Â, which depends on both the pre- and the post-
selected state of the object system. This newly defined quantity exhibits unusual properties.
Unlike an expectation value of a bounded observable, it is not restricted to the spectrum of
eigenvalues and can even be complex. The difference arises due to the postselection. If the
weak value is complex, the expression e−

iεg
~ AwX̂ constitutes a nonunitary operation, which

may be understood as increasing or decreasing the probability of postselection dependent
on the imaginary part Im(Aw) or equivalently changing the expected relative size of the
ensemble which survives the postselection [5, 8]. Thus, the nonunitary process can be in-
terpreted as an effective Hamiltonian which creates or destroys systems. [8] The conditions
for the above approximation to hold, can be formulated as

εg

~
∆X max

∣∣∣∣∣(Ar)wAw

∣∣∣∣∣
1
r−1

� 1 (r = 2, 3, ...) (3.4)

and
εg

~
∆X|Aw| � 1. (3.5)

The first relation ensures the weakness of the interaction within the pre-and-postselected
measurement [24]. Recalling section 2.1.2 a weak interaction means that the correlation
between the object states |ai〉 and the pointer states |φi〉 is not unique because differ-
ent pointer states overlap almost completely and therefore the object state is almost left
unaffected. Whereas the second, stronger condition manifests itself in the linear shift in
the probability distribution for M̂ , whose shape is otherwise unchanged in these limits
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[24]. With both requirements simultaneously fulfilled, the averaged pointer readout of any
observable M̂ evolves according to [21, 42]

〈φw|M̂ |φw〉 − 〈φ0|M̂ |φ0〉 ≈

D
(
i
εg

~
Re(Aw)〈φ0|[X̂, M̂ ]|φ0〉+ εg

~
Im(Aw)

(
〈φ0|{X̂, M̂}|φ0〉 − 2〈φ0|X̂|φ0〉〈φ0|M̂ |φ0〉

))
.

(3.6)

Here the normalization constant D is abbreviated for N|〈ϕ|ψ〉|2. It is to first order approx-
imation a function of the weak value of Â, which is the only quantity related to the object
system that remains [42]. While the first term of the equation looks familiar from the
expression for preselected only, i.e. standard measurements with 〈Â〉 replaced by Re(Aw),
which results from e−

iεg
~ Re(Aw)X̂ , the second term arises due to the action of the operator

e
εg
~ Im(Aw)X̂ . If the overlap between pre-and postselected state is rather small, the real and

the imaginary part of the weak value gets accordingly large. As a consequence the shift
in the expectation value of the pointer observable can exceed the spectral range of the
object observable Â by far, i.e. it can get much larger than the shift without postselection.
This amplifying effect is implemented in experiments for determining a small unknown
parameter g. However it comes with a drawback in that for a small overlap the associated
probability of post-selection becomes small. Expanding the latter to second order with the
assumption that 〈X̂〉0 = 0 reads prob(ϕ|τ) = |〈ϕ|ψ〉|2(1 − ε2g2

~2 〈X̂2〉0 (Re(A2
w)− |Aw|2),

such that the normalization constant may be approximated to D = |〈ϕ|ψ〉|2

prob(ϕ|τ) ≈ 1 to first
order. Each the real and the imaginary part of Aw may be determined by measuring suit-
ably chosen observables M̂ . The latter may even commute with the observable involved in
the interaction X̂, i.e. M̂ = X̂. This case has no analogue in the standard, pre-selected
only measurement scheme because there is no shift in 〈X̂〉 there. Therewith Eq. 3.6 reads

〈X̂〉w − 〈X̂〉0 = D2εg
~

Im(Aw)(∆X0)2 (3.7)

By measuring both, the input observable X̂ and any non-commuting output observable
M̂ , one gets two relations to deduce both unknowns, the real and the imaginary part of
the weak value of Â. Remarkably, the simple relation for the pointer output, namely its
linear shift by the weak value, holds for arbitrary systems in weak pre- and postselected
measurements under the stated limits. The linear dependence of the outcome on Aw is
sometimes referred to as the linear-response regime or AAV limit.

3.2 Extensions
Outside of this regime, when the pre-and postselected states are nearly orthogonal a non-
linear approximation becomes necessary, even if the interaction is still considered weak.
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Higher orders - in particular the probability in the denominator of the normalization con-
stant cannot be neglected any more. The average shift decreases rapidly with decreasing
overlap of pre-and postselected states. That is, for a given weak interaction strength there
exists a maximal outcome, which can be achieved with an optimal overlap [49].
Furthermore there exist generalizations for exactly orthogonal pre-and postselection

states, which require a distinct definition of the weak value. This case is meaningful
because the pre-selected state may undergo a slight change due to the weak interaction,
so that there might still be a non-zero overlap with the postselection state, under the fur-
ther assumption that neither the preselected nor the postselected state commutes with the
observable Â [49]. However, the amplifying effect is not limited to weak interactions only
and is to some extent still visible beyond weak interactions. Resulting pointer shifts in
general non-ideal pre-and postselected measurements have been related to corresponding
higher order, semi-weak or generalized weak values [33]. The respective pointer probabil-
ity distributions then display profiles with d pronounced peaks together with remaining
interference between the single distributions depending on the overlap of different pointer
wave functions.

3.3 Canonically conjugated pointer observables
Let us recall the setting from the preselected-only measurement in section 2.1.2 where the
pointer observable X̂ is replaced by the momentum P̂ and the pre-measurement entangling
the two systems is assumed weak, such that the pointer’s wave function in position space is
shifted by εg〈Â〉. As a result of a following projective postselection on the object’s subspace
it evolves into

φ1(q)→ φw(q) ≈ φ0 (q − εgAw) (3.8)
under the above conditions. Thus, it may exceed the spectrum of Â depending on the
post-selection or rather the overlap of pre-and postselected states. The corresponding shift
in the expectation value of Q̂ is given by

〈Q̂〉w − 〈Q̂〉0 ≈ (εgRe(Aw)) (3.9)

and the one of P̂ reads
〈P̂ 〉w = 2εg

~
Im(Aw)(∆P0)2. (3.10)

As above the initial expectation value 〈P̂ 〉 is assumed to vanish, which is definitely the case
for a pure initial pointer state, that is an even wave function [49]. Here also the expectation
value of the anti-commutator is assumed to vanish, which is the case if the initial pointer
wave function is purely real-valued up to an overall constant phase [21].
Example a) To illustrate how the pointer probability distribution in Q̂ space is anoma-
lously shifted, we consider the example given in 2.1.2, where Â = 1√

2 (σ̂x + σ̂z) and the
preselected state is |ψ〉 = |P 〉. With a postselected state |ϕ〉 = |H〉, the weak value is
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Figure 3.2: Probability distribution in Q̂ space of a pre- and postselected measurement with
Aw =

1√
2
〈H|σ̂x+σ̂z |P 〉
〈H|P 〉 =

√
2. Case a) and b) are considered strong measurements

as the standard deviation given here is ∆ =
√

2∆Q0 � 1, such that the
distribution has distinct peaks located at the eigenvalues, where +1 is more
probable than −1. Cases c)−f) show the change to a weak pre-and postselected
measurement by increasing ∆, which results in a single broad peak at the
weak value Aw =

√
2, located outside the spectrum of Â. The shift becomes

resolvable in case f), where N = 5000 object-pointer systems are used to reduce
∆ by the factor 1√

N
to about 0.14. Figure modified from [10].
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given by Aw =
1√
2
〈H|σ̂x+σ̂z |P 〉
〈H|P 〉 =

√
2, which is outside the eigenvalue spectrum of the observ-

able. In Fig. 3.2 the evolution of the final pointer probability distribution from a strong
to a weak PPS measurement is shown [10].
Example b) To elaborate on the amplification phenomenon of the weak value, it is in-
structive to examine the results of a weak pre-and postselected measurement without ap-
proximations. To this end we consider the example given in section 2.1.2, where the pointer
wave function is Gaussian, Â = σ̂z and ψ is given by Eq. (2.1).
The pointer state after postselection reads

φw(q) = N (αφ0(q − εg) + βφ0(q + εg)) (3.11)

with the abbreviations α = a〈ϕ|H〉 and β = b〈q|V 〉 and N = 1/
√

prob(ϕ|τ) as above. The
latter is given without approximations by

prob(ϕ|τ) =
∫

dq |φw(q)|2 = |α|2 + |β|2 + 2 Re
(∫

dq αφ0(q − εg)β∗φ0(q + εg)∗
)

= |α|2 + |β|2 + 2J Re(αβ∗) (3.12)

with the overlap integral J =
∫

dq φ0(q − εg)φ0(q + εg)∗ [42]. The resulting position
expectation value reads [42]

〈Q̂〉w = εg(|α|2 − |β|2
|α|2 + |β|2 + 2J Re(αβ∗) (3.13)

From the comparison with the corresponding mean value for standard, pre-selected only
measurements 〈Q̂〉 in (2.19), it becomes clear that the postselection allows for a much
higher output shift due to the denominator prob(ϕ|τ) in 〈Q̂〉w. The so-called amplification

factor is the quotient 〈Q̂〉w
〈Q̂〉

, which may exceed unity by far. The magnitude of the averaged

shift can be expressed as [42] ∣∣∣〈Q̂〉w∣∣∣ ≤ εg√
1− J2

(3.14)

. It is maximal for a specific overlap, namely 〈ϕ|ψ〉 = α 1
J

(
±
√

1− J2 − (1− J)
)
. There-

with the probability reads [42]

prob(ϕ|τ) = 2 |α|
2(1− J2)

1 +
√

1− J2
(3.15)

As a result the amplification increases as J → 1 [42]. Under the assumption that the initial
wave function is a Gaussian the associated variance of Q̂w is given by [42]

(∆Qw)2 = (∆Q0)2 + ε2g2

 |α|2 + |β|2
prob(ϕ|τ) +

(
|α|2 − |β|2

prob(ϕ|τ)

)2
 . (3.16)
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At maximal shift 〈Q̂〉max
w it is equal to the initial variance, i.e. (∆Qw)2 = (∆Q0)2, inde-

pendent of the interaction strength [42].
Under the weak measurement condition the overlap integral may be approximated by
J ≈ 1− 1

2

(
ε2g2

~2

)2
〈P̂ 2〉0 +O(ε3g3) such that the maximal shift may be estimated at [42]

〈Q̂〉maxw ≈ ~
(
〈P̂ 2〉0

)− 1
2 ∼

(
〈Q̂2〉0

) 1
2 (3.17)

which means the amplification is bounded by the initial standard deviation of Q̂. The
respective approximation for the probability reads [42]

prob(ϕ|τ) ≈
(
ε2g2

~2

)2

|α|2〈P̂ 2〉0 ∝
(
〈Q̂〉maxw

)−2
(3.18)

underlining the fact that large amplification appears only very rarely for a single system
[42].

3.4 General considerations

The standard definition of an expectation value of an observable is the weighted average of
its eigenvalues, i.e. 〈ψ|Â|ψ〉 = ∑ds

i=1 ai|〈ai|ψ〉|2. A possible interpretation in terms of weak
values is provided by the following sum rule:

〈Â〉 = 〈ψ|Â|ψ〉 =
∑
j

〈ψ|ϕj〉〈ϕj|Â|ψ〉 =
∑
j

|〈ψ|ϕj〉|2
〈ϕj|Â|ψ〉
〈ϕj|ψ〉

=
∑
j

prob(ϕj|ψ)Awj, (3.19)

which links 〈Â〉, as the outcome of a pre-selected only measurement, with the weighted
average of weak values Awj, as the linear outcome of weak pre- and post-selected systems
(PPS). The weak values, which lie outside the spectral bounds of Â due to a small overlap
|〈ϕj|ψ〉|, are weighted with accordingly small probabilities, which ensures that the result
is constrained to the spectrum of eigenvalues of Â. An equivalent formulation of the above
expression reads∑

j

|〈ϕj|ψ〉|2 Re(Awj) = 〈Â〉 and
∑
j

|〈ϕj|ψ〉|2 Im(Awj) = 0 (3.20)

meaning that the imaginary part cancels out in the calculation [24]. There is a similar
formulation for the second moment of Â, namely [20]

〈ψ|Â2|ψ〉 =
∑
j

|〈ϕj|ψ〉|2Aw∗jAwj =
∑
j

prob(ϕj|ψ)|Awj|2 (3.21)
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which enters the standard deviation ∆A. Using the relation [9]

Â|ψ〉 = 〈Â〉|ψ〉+ ∆A|χ〉, (3.22)

which holds for a normalized state |χ〉 being orthogonal to |ψ〉, and by choosing a post-
selection state as |ϕ̃〉 = u|ψ〉+ |χ〉 with 0 6= u ∈ C, one finds [25]

Aw = 〈ϕ̃|Â|ψ〉
〈ϕ̃|ψ〉

= 〈Â〉+ ∆A
u∗

. (3.23)

Interestingly, the weak value can be expressed in terms of the two ordinary quantities
expectation value and standard deviation and simultaneously attain an arbitrary com-
plex number by designing u in |ϕ̃〉 appropriately, unless |ψ〉 is an eigenstate of Â, then
∆A = 0 [25]. This leads to a peculiar property of pre-and post-selected systems in general,
irrespective of the strength of the measurement interaction. If either the pre- or the post-
selected state is an eigenstate of the measured observable, the weak value is fixed, equal
to the respective eigenvalue. Thus, if both are unequal eigenstates corresponding to two
non-commuting observables, the latter have definite values, despite the absence of com-
mon eigenstates. By contrast, in pre-selected only systems two observables simultaneously
exhibit sharp values only if they commute, i.e. have a common set of eigenstates [24, 18].

3.5 Applications

The weak value has its most practical application as a metrological technique. The idea is
schematically displayed in Fig. 3.3.
The first experiment which utilized weak pre-and postselected measurements for its

potential in amplifying small quantities was the observation of the optical spin-Hall-effect
in 2008 [28], which cannot be observed with traditional measurement schemes. On one
hand the effect of signal amplification helps to improve the signal-to-noise ratio, but on the
other hand the simultaneous decrease in the overall measurement probability contributes
to statistical loss [25]. Recent analysis which allows for uncontrollable uncertainty of
measurements in its estimate, i.e. which cannot be modelled statistically, suggests that
this trade-off relation indeed provides a range of problems, where the weak value protocol
is advantageous over others [25]. In particular, its application is useful whenever technical
noise limits the sensitivity, i.e. the resolution of the measuring device is insufficient to
detect a possible shift, whilst enough systems are available [25]. Then it represents a
valuable and a facile option to overcome these technical limitations [46]. This is exploited
both in quantum and in classical experimental settings because the effect can be mimicked
with classical waves.
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Figure 3.3: The weak value as metrological technique. Schematically shown are the prob-
ability distributions of N systems referring to example a) above. The green
bars denote the possible outcomes of an ideal measurement without postse-
lection. The broad blue distribution corresponds to probabilities in a weak
measurement. The tail of the former includes the small postselection probabil-
ity, as shown in the inset, which corresponds to a weak PPS measurement with
Aw =

√
2. This amplifying effect can be useful in determining small quantities.

Figure modified from [7]

3.6 What is the weak value?
The concept of weak values is accepted in the science community. Indeed, the formalism
itself is hardly controversial, unless it comes to interpreting this new quantity. So far no
consensus has been reached on this issue, despite the extensive investigation of its usefulness
for various purposes.
One possible interpretation is to explain weak values as measurement errors [8]. To elab-

orate on this, we leave out the post-selection for now. Ideal measurements are defined to
yield eigenvalues of the observable under study as outcomes. In this limit the uncertainty
in the configuration space of the pointer, say q, and the amount, by which the pointer is
shifted corresponds to an eigenvalue [8]. In a weak measurement, however, the uncertainty
in q space - let’s assume a Gaussian wave function for simplicity - is required to be com-
parably large. Then it is in principle possible for the pointer to yield any value due to the
uncertainty, unrelated to the object observable [8]. This can be understood as the scatter
around the intended value, which typically scales with the order

√
N for an ensemble of N

object-pointer systems [7]. Errors outside of this range may be explained by interference
effects in the pointer. However, the probability for such large errors to appear is decreasing
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the larger they are [7]. For all cases where the postselection succeeded, corresponding to
an ’unusual’ weak value, the pointer wave function before the postselection must have con-
structively interfered to this value and destructively anywhere else [8]. That’s the reason
why successful weak pre-and postselected measurements consistently yield such a value,
while for weak measurements without postselection it is just a rare error and repetitions
will not show a trend towards such a value.
As in this thesis the concept of the weak value can be fully addressed in standard quantum

mechanics, but may as well be accessed from any approach to quantum measurement theory
[46].
An opposing interpretation from the one above is given by the two-state vector formal-

ism (TSVF). It is a time-symmetric reformulation of quantum mechanics, which is closely
related to the concept of PPS systems and weak values. According to the TSVF the most
complete description of a quantum system is given in terms of the preselected and postse-
lected state vector, or more generally density matrix [6]. Both states are thought to evolve
independently in opposite directions of time, where forward is defined as the direction of
increasing entropy [6]. The two boundary conditions and therefore the two associated wave
functions are seen as equally important for the quantum system in between. That is, it
is influenced by both of them. Proponents of this approach claim that it facilitates the
computational treatment of weak values and provides an intuitive interpretation of strange
quantum effects [7].

3.7 Comparison with eigenvalue and expectation value
As the interpretation of the weak value of an observable may still considered to be un-
clear, we investigate the quantity from an operational point of view. In particular we are
interested in how its behaviour compares with other - ordinary - quantities, as the eigen-
value and the expectation value of an observable. To this end we choose the closeness of
the pointer quantum states, referring to the respective object quantities, as a criterion for
similarity. That is, the pointer state obtained for an eigenvalue is to be compared to that
obtained for a numerically equal weak value as well as to that obtained for a numerically
equal expectation value. The proximity of two quantum states shall be expressed in terms
of the Bures angle, as introduced in section 2.3.

3.7.1 General relations for arbitrary systems
The Hamiltonian of interaction between object and pointer system shall be given as in 2.7.
For the situation when initially the object system is in an eigenstate of Â with eigenvalue
a, the pointer state, initially given by |φ0〉 and its probability distribution will be shifted
according to that eigenvalue as a result of the interaction, while remaining undisturbed.
Then the pointer state, labelled with the subscript e for eigenvalue, reads

|φe〉 = e−
iεg
~ aX̂ |φ0〉 (3.24)
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irrespective of post-selection. When the pointer state describes a weak value Aw, which
numerically equals the eigenvalue a, but neither pre- nor postselected state are the corre-
sponding eigenstate, it reads

|φw〉 = N〈ϕ| e−
iεg
~ ÂX̂ |φ0〉|ψ〉 (3.25)

as in Eq. (3.2) above. The Bures angle between |φe〉 and |φw〉, expanded in powers of εg
with the normalization factor taken into account, reads [47]

DA (|φe〉, |φw〉) = arccos |〈φe|φw〉| =
∣∣∣(A2)w − a2

∣∣∣ √〈X̂4〉0 − 〈X̂2〉20
ε2g2

2~2 +O(ε3g3) (3.26)

Noticeable, the first order in εg vanishes. For the situation when the pointer state comprises
the expectation value of Â, 〈Â〉 is assumed to be numerically equal to a. The initial object
state is a superposition of eigenstates, namely |ψ〉 = ∑

i=1 ci|ai〉. After the interaction the
systems are entangled and the reduced density matrix of the pointer system, denoted by
the subscript ex, is given by [47]

σex =
∑
i=1
|ci|2 e−

iεg
~ aiX̂ |φ0〉〈φ0| e

iεg
~ aiX̂ (3.27)

recalling from 2.11. Computing the Bures angle yields [47]

DA (|φe〉, σex) = arccos
(√
〈φe|σex|φe〉

)
= ∆A∆X0εg +O(ε2g2), (3.28)

where the first order does not vanish provided the initial pointer state is not an eigenstate
of X̂ and the object state not an eigenstate of Â. As a consequence of applying this
measure, the change corresponding to a weak value scales with higher order of the small
parameter with reference to the eigenvalue than the one attributed to the expectation value.
Equivalently, the overlap of the weak value state with the eigenvalue state is greater than
that of the expectation value state with the eigenvalue state. Therewith the object system
weak value behaves more similar to an eigenvalue than to an expectation value in regard to
its action on the pointer system. This subject is discussed in reference [47], which claims
that the weak value behaves similar to an eigenvalue even if the weak value is such that its
numerical value cannot be achieved by an eigenvalue, i.e. it exceeds the spectrum of the
observable or takes on a complex number. In the latter case the numerically equal reference
eigenvalue is only virtual. In the limit of vanishing ε2g2∆X2

0 the object system described
by the weak value affects the pointer system as if it were described by an eigenvalue with
corresponding eigenstate. As a consequence we suggest that in the weak limit the object
observable in the interaction Hamiltonian of weak PPS measurements may be replaced
with its corresponding weak value [47].
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3.7.2 Conceptual implementation
The above expressions are implemented via a polarization-based experiment. In particular
the comparison is realized by means of an interferometer containing the states under study
in the respective interferometer arms. The measure is represented by the interference
quality of the eigenvalue case with the weak value case as well as with the expectation
value case. The connection between the visibility and the Bures angle between quantum
states is possible by the relation given in (2.60), namely DA = arccos (Vmax).
The object observable Â is represented by the Pauli matrix σ̂z of a photon, while the input

pointer observable X̂ is chosen as its momentum. The initial pointer state is effectively
the same as in 2.1.2, i.e.

φ0(q) =
 1√

2π(∆Q0)2
e−

q2

2(∆Q0)2

 1
2

, (3.29)

realized by one dimension of the transversal position of a collimated Gaussian beam. As
a polarization system contains only two eigenstates with eigenvalues +1 and −1, a third
fictional one has to be conceptualized to be able to consider all cases. This fictive eigenvalue
is 0. The initial object state reads

|ψ〉 = 1√
2

(|H〉+ |V 〉) = |P 〉. (3.30)

The interaction is modelled by a birefringent crystal, which couples the polarization to the
momentum upon tilting. This translates to a mean transverse position shift, which is not
of interest here, because we assume it to be equal in all cases. The set-up is adjusted such
that the mean displacement caused by the crystal is compensated and therewith the object
system is described by the σz operator. The reference case, where the eigenvalue is zero,
corresponds to no interaction at all. The three cases are realized by the following settings:

(i) eigenvalue 0: the object state stays as it is, as realized in the reference arm of the
interferometer by the absence of any interaction.

(ii) weak value 0: this is achieved with the birefringent crystal in between the pre- and
postselection, which are carried out by P-polarisers.

(iii) expectation value 0: the pre-selected P-polarised state is followed by the birefringent
crystal, without postselection.

The cases (ii) and (iii) are embodied in the second arm of the interferometer, called test
arm. Depending on the case studied the polariser which defines the post-selection has to
be taken in or out.
To illustrate the conceptual implementation the schematic set-up is shown in Fig. 3.4,
while for a detailed discussion of the actual realization of the interference experiment it is
referred to the next chapter.
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Figure 3.4: Schematic of the conceptual implementation of the interference experiment [47].
Shown is the reference and the test arm, which prepare the different pointer
states. Depending on the case studied the polarisers in the test arm have to be
adjusted. By varying the relative phase, denoted by α, the intensity is being
modulated.

With this the pointer state corresponding to (i) is

φe(q) = φ0(q), (3.31)

the one corresponding to (ii) is [47]

φw(q) = N
(

e−
(q−ge)2

4(∆Q0)2 + e−
(q+ge)2

4(∆Q0)2

)
, (3.32)

while the pointer state corresponding to (iii) is [47]

σex(q) =
∫

dq dq′ 1
2
√

2π∆Q0

(
e−

(q+ge)2+(q′+ge)2

4(∆Q0)2 + e−
(q−ge)2+(q′−ge)2

4(∆Q0)2

)
|q〉〈q′| (3.33)

According to the general result Eq. (3.26), the Bures angle between the eigenvalue and
the weak value state is given by

DA (|φe〉, |φw〉) ≈
ε2g2

4
√

2(∆Q0)2
, (3.34)

while the Bures angle between the eigenvalue and the expectation value reads

DA (|φe〉, σex) ≈
εg

2∆Q0
, (3.35)

according to Eq. (3.28). The linear and quadratic approximations made are compared to
the exact scaling functions in Fig. 3.5. For small values of gε

∆Q0
the former resemble the
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latter well. To experimentally check both expressions, (3.34) and (3.35), the visibility in

Figure 3.5: Theoretical scaling behaviour in terms of the Bures angle. For small interac-
tion strengths the scaling behaviour is to a good approximation linear in the
expectation value case (red) and quadratic in the weak value case (blue).

the interferometer has to be maximized in each case. The scaling behaviour is shown by
varying the interaction strength εg, which is realized by tilting of the crystal, under the
constraint of staying in the regime of weak interaction and linear pointer response. The
theoretical graphs are shown in Fig. 3.6 in terms of the Bures angle and in Fig. 3.7 in
terms of the visibility.
There the interaction strength is narrowed down to the range relevant in the experiment.

The difference in scaling is clearly visible in both figures.
In essence the different scaling behaviour can be explained by the difference in the loss

of coherence dependent on the interaction strength. If the object system is in an eigenstate
it is not influenced by the interaction with the pointer, irrespective of its strength, which
is represented by the constant line in Fig. 3.7. If the object system is described by an
expectation value its state gradually transforms towards an incoherent mixture. This is
counteracted, if the object system is described by a weak value, where its state is only
disturbed comparably little over the range of a weak interaction strength. This means that
the act of postselecting, which dis-entangles the object system from the pointer system,
enables to some extent restoring of coherence.
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Figure 3.6: Theoretical scaling behaviour in terms of Bures angle, where the expectation
value case (red)changes faster than the weak value case (blue).

Figure 3.7: Theoretical scaling behaviour in terms of visibility, where the weak value case
(blue) deviates only little from the constant reference line, which represents the
eigenvalue case, while the expectation value case (red) drops considerably.





4 Material and methods

4.1 Experimental set-up
A schematic of the experimental set-up is displayed in Fig. 4.1. It shows the set-up for
the beam preparation and the interference experiment, which will be explained in the
following two sections. Fig. 4.1 also shows the scanning optical cavity, which is one of
the methods used to optimize the experimental conditions in order to achieve maximized
visibility, which is required for the successful realization of the experiment. This and other
applied methods will be discussed in section 4.1.3.

4.1.1 Beam preparation
At the very outset comes the preparation of the laser beam. The laser set-up contains an
external optical grating, mounted in a Littrow configuration as described in reference [36].
The laser system is placed in a thermoconductive mounting, grounded on a bottom panel,
which comprises a thermoelectric cooler with a thermistor sensor. The infra-red laser diode
is followed by an aspheric collimating lens. The outcoming laser beam then propagates to a
diffraction grating, which acts as a dispersive element. While the first order of diffraction is
retro-reflected and fed back into the laser diode, the zeroth order fraction is used as output
beam. The collimating lens has to be adjusted such that the focal point of the beam is
at a large distance, in our case about 4 m. With increasing distance the spot diameter of
the back-fed beam at the laser diode decreases and therefore the coupling into the diode is
more efficient [40]. If the spot size is small, however, one has to be more careful with the
alignment such that it overlaps the diode cross-section [40].
The grating is aligned in an iterative manner using two degrees of freedom, i.e., horizontal

and vertical tilting, such that the laser operates at a single mode. To ensure that the retro-
reflected beam meets the laser diode, the grating is tuned such that both output beams,
the primary and the secondary reflection from the grating, coincide. When they overlap
the output intensity is significantly enhanced. The horizontal degree of freedom is tuned
such that the lasing threshold is minimal. The threshold current is lowered by further
aligning the grating correspondingly. This procedure allows for the selection of a single
longitudinal mode for lasing.
Two laser systems were used for measurement data acquisition. The original and primar-

ily utilized laser diode, Sanyo DL7140-201S, with a typical lasing wavelength of 785 nm and
a typical output power of 70 mW in continuous wave operation, was already ready for use.
In the course of the workings shortcomings concerning the mounting of the laser system
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Figure 4.1: Experimental set-up. At the top the beam preparation is depicted. The main
part shows the set-up for the interference experiment, where the test and the
reference arm prepare the quantum states which are to be compared. At the
top on the right the set-up for the scanning optical cavity is displayed.
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had to be remedied, such as worn out tension springs and the adjustment screw. In this
regard also the above mentioned laser diode was replaced by a newly set-up laser-diode of
the same typical lasing wavelength, namely L785P090 Thorlabs.
The output laser beam propagates first to an optical isolator, which lets light travel

through in one direction, but blocks it in the opposite direction. The purpose of this
device is to prevent unwanted reflections from subsequent optical components back into
the laser system, which could alter the laser emission by feedback or cause damage. Its
functional principle is based on the Faraday effect, explained in section 2.2.4.
Next the beam passes an anamorphic prism pair, which is supposed to transform the

elliptical beam profile, which is a result of the laser diode semiconductor structure, into a
concentrically symmetric beam profile. This is done by expanding the beam diameter in
only one dimension to eliminate the ellipticity [15].
Via a mirror the beam is then deflected towards a fibre collimator, which comprises a

collimating lens and a connection to an optical fibre. Coupling the beam requires adjusting
the tip and tilt set screws on the mounts of the mirror as well as of the collimator itself
together with matching the focal plane the lens such that the maximum amount of laser
power gets into the fibre, which is controllable by means of an attached power meter. This
process of iteratively optimizing the alignment to reach a specific point in space with a
specific angle, is called ’walking the beam’ [3].
The beam is then transmitted via an optical single mode fibre (SMF), where only a

single transverse mode is supported, to obtain a TEM00 mode in the interferometric set-
up. The light is guided by the principle of total internal reflection. To this end the fibre
is composed of a dielectric core, which is surrounded by a cladding material with a lower
index of refraction. At the end of the fibre the light is coupled out again with a fibre
collimator, 60FC-0-M12-10 Schäfter & Kirchhoff GmbH. In between, fibre polarization
controllers, so-called bat ears, which are capable of changing the polarization, are set such
that after an additional horizontal polariser the out-coupled power is on the order of a few
mW.
The fibre collimator was selected under the premise that the output provides the best

accordance with a symmetric Gaussian intensity distribution, which was checked at differ-
ent positions by means of a beam profiling camera, WinCamD, analysed with the software
from the manufacturer DataRay Inc. The laser beam was collimated parallel to the op-
tical table by use of iris diaphragms and the beam profiling camera over a distance of
approximately 3 m.

4.1.2 Set-up for the interference experiment
The beam first passes a horizontal polariser to start with a well defined polarization. Next
it is divided by a non-polarising beam splitter, which reflects half of the light incident and
transmits the other half. The reflected part is focussed by a converging lens onto a photo
diode (for clarity henceforth called output port 1), which converts impinging light into
electrical current signal. The detector is employed to monitor the fluctuation in overall
laser intensity. The transmitted part is further utilized for the interference experiment.
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For better handling, the set-up is designed as a modified Michelson interferometer with
retro-reflecting prisms, corresponding to a folded Mach–Zehnder interferometer. Therefore
two beam splitters (BS) are used, which are placed in separate mountings on translation
stages because a joint mounting did not offer enough options for adjustment. They consist
of a glass plate with a reflective dielectric coating on one of the sides. Both were chosen for
their properties of being approximately 50:50 for all polarizations. For clarity one arm of
the interferometer is called ’test’, while the other one is named ’reference’. To accomplish
a continuously varying phase difference between the arms of the interferometer the path
length of the reference arm is continuously scanned. For this purpose a piezo element is
connected to the prism of the reference arm, which is actuated by a function generator
producing a triangular ramp signal, such that the prism moves back and forth over a few
micrometers. In both arms the optical components defining the quantum states for the
measurement are placed in the retro-reflected beam path to avoid unwanted phase shifts
from the prisms (Goos-Hänchen effect). Optical components involved in the set-up are
calibrated and cleaned with collodion. Polarisers are from Codixx AG. Motors connected
to components help to automatise procedures whenever useful. Interference is measured
at one of the interferometer ports (output port 2) via a second photo diode (PD) detector.
Although the two detectors have different capacities, it is made sure that each of the used
resistors is lower than the resistors of readout instruments.

Test arm

The test beam is operated with two different settings, one for the expectation value and
one for the weak value. The sequence of components both have in common are a motorised
linear polariser, followed by a motorised birefringent crystal. The latter is yttrium ortho-
vanadate (YVO4), a positive uni-axial crystal, which was discussed in section 2.2.4. All
utilized motors exhibit slight mechanical vibrations at specific unstable motor positions.
The motor which is least vibrating is chosen to actuate the crystal, which is most sensi-
tive to instabilities. Furthermore the motors are always driven from the same direction
to circumvent that possible backlash alters the desired motor setting. The prism in the
test beam is motorised to automatically adjust its position to compensate the predicted
mean displacement of the beam caused by tilting the crystal, where one step of prism
movement causes a beam shift of 0.156µm. In particular the calculated position is cen-
tred between the ordinary and extraordinary beam components, which are refracted by
different indices. Thereby the location of the beam center of mass behind the crystal does
not change irrespective of the tilting angle. The different configurations are P-polariser -
crystal - P-polariser for the weak value setting and P-polariser - P-polariser - crystal for the
expectation value setting. In the latter case the polariser, which is not to be used behind
the crystal is instead placed in front of the other P-polariser to maintain an equal number
of optical components and therefore balanced distortions by surface effects. In practice
the motorized polariser is not exactly set to 45◦ linear polarization to account for a slight
difference in transmission for horizontal and vertical component through the crystal. The
automatic compensation of the polariser for each tilting angle of the crystal makes sure that
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equal fractions of horizontal and vertical polarized light traverse the crystal. With varying
beam displacement also the components in front of the crystal are displaced accordingly
via translation stages to ensure that the beam impinges on the same surface spots for the
whole measurement series.

Reference arm

The reference arm has to match the intensity of the test arm. Varying the intensity is
achieved by means of a motorised polariser, followed by a set polariser. For controlling and
balancing the intensities of the reference and the test arm, beam blocker tools are attached
to each of the motorised polarisers, such that the arms may be automatically blocked one
after the other.
The polarisation state of the reference arm has to equalize the one of the test arm at

the location of output port 2. The polarization of the beam in the test arm is reflected by
the beam splitter, such that the expected polarization is −45◦ linear, i.e. minus. However,
there arises an unwanted elliptical polarization component with the deflection. This is
compensated for by means of an auxiliary YVO4 crystal with a thickness of 300µm in the
reference arm. The induced beam separation, which is undesired here, is negligibly tiny for
the linear birefringent crystal of this length, while the phase shift induced by propagation
through the crystal is sufficient to compensate the unwanted ellipticity. Depending on the
laser wavelength, the tilting of the thin crystal has to be modified slightly, such that the
polarization matches the one of the beam in the test arm.

Acquisition of data

The voltages of the two photo detectors are read-out via separate input channels of an
analogue-to-digital converting usb-voltmeter, which is connected to a computer. To feed
in data from the ramp signal driving the piezo element at the prism, the voltage output of
the function generator is carried along via a third channel. All measured data are recorded
together with an internal time-stamp of the read-out device, where the read-out rate is
100 Hz. The timing is consistent over all inputs. The results may either be displayed
simultaneously in real time or automatically written to a file.

4.1.3 Applied methods
Spatial alignment

The beam paths should be collinear and of equal optical lengths. The aligning process
to see interference involves walking the beam by adjusting both beam splitters and both
prisms, which are also placed on translation stages, such that the beam splitters are always
hit near the center. Vernier adjustment is done based on the image of the beam of a video
camera, which is placed at one of the output ports of the interferometer. It is, in contrast to
the human eye, capable of detecting infra-red light such that the interference quality may
simultaneously be observed via a connected screen. Position mismatches and the resulting
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local intensity deviations are difficult to detect by eye, while angle mismatch becomes
apparent by swiping interference patterns or fringes, exemplary displayed in Fig. 4.2. To

(a) Overlapping beams (b) Angle mismatch

Figure 4.2: Exemplary recordings of spatial alignment. The aim is to spatially overlap the
two Gaussian modes without angle or lateral mismatch. (a) shows spatially
well overlapping beams, while in (b) there is an angle mismatch present.

accurately correct for the difference in path lengths another laser source emitting pulsed
radiation is temporarily coupled into the set-up. The former is a titanium-sapphire laser,
which generates short pulses with duration of 130 fs at a wavelength of 780 nm. Due to its
broad spectrum and short coherence length the interference pattern is much more sensible
to distance variation, which makes it possible to precisely equalise the path lengths of both
arms. All steps are repeated when necessary, especially after inserting optical components,
which may alter angle, position and optical path length of the beam propagation.

Phase preserving crystal angles

The crystal induces a phase between horizontal and vertical polarization component, which
changes progressively with its effective thickness upon tilting. Therefore the tilting angles,
where the polarization of the incident beam stays equal, have to be found, which constitute
usable settings for the measurement protocol. The intensity is recorded when varying the
angle of the crystal, while the reference arm is blocked. The preselection polarization is
−45◦ (M), while the postselection polarisation is +45◦ (P). The angle positions where the
intensity is minimal yield the settings, where the polarization state is effectively preserved
after the crystal.

Matching the polarization via state tomography

For measuring polarization a motorised quarter-wave plate and a motorised polariser are
placed behind one another in output port 2. With respective angle settings it is possible to
project a given state onto arbitrary states. The method of choice to match the polarisations
of both arms involves finding the state orthogonal to the state of the test beam by varying
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the orientation of the quarter-wave plate and the polariser at output port 2. The test
arm is in the configuration of the weak value, i.e. with a P-polarized postselection such
that the effect of the beam splitter can be exactly compensated. The polarization state
corresponding to the angle setting which cancels the test arm intensity best is then set
in the reference arm. The other arm is blocked in the respective alignment steps. By
manually tuning both the set polariser and the thin crystal in the reference arm, again
the state which gives the best extinction ratio is prepared. Thus the reference polarization
is set to precisely meet the one of the test arm. This is also true for the expectation
value setting because for the interference experiment the crystal is set to angles where the
polarization stays equal.

Spectral analysis via scanning optical cavity

Monitoring the spectral distribution of the beam is accomplished by means of an optical
cavity, which is inserted in the set-up at output port 1 via an additional beam splitter. The
confocal cavity consists of two plano-concave reflecting mirrors, separated by a distance
d, which equals the curvature radius. That means a resonant mode traverses the cavity
twice before it overlays its path, i.e. the mode spacing becomes degenerate according to
∆νconfocal = ∆νFSR/2.

(a) Single-mode (b) Multi-mode

Figure 4.3: Exemplary recordings of the spectral distribution from an oscilloscope display
using a scanning optical cavity. The aim is to choose the laser current such
that the laser operates on a single longitudinal mode

To approximately match the transverse mode of the incoming beam to the one of the
cavity, a plano-convex lens focusses the incoming beam into the cavity. The proper set-up
of the cavity requires adjusting position and angles of the two mirrors such that their focal
points coincide at the center of the cavity [44]. Thereby the transmission of the TEM0,0
mode is maximized, while that of other cavity modes is minimized. After alignment a photo
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diode is placed behind the cavity. One of the cavity mirrors is attached to a piezo element,
which is driven by a connected function generator producing a triangular ramp signal. To
see the scanning of the spectrum of the beam, both, the detector and the function generator
are read out via an oscilloscope. One can trigger it to display the detected voltage against
the time it takes to traverse half of the spectral range, which is about ∆νconfocal = 750 MHz
for a cavity length of 10 cm. If the laser operates in single-mode, the oscilloscope display
shows only one maximum. From reading of the time intervals of ∆νconfocal and of the
FWHM of the peak its linewidth may be deduced to maximally 19 MHz. By monitoring
the spectrum the current can be appropriately chosen, as depicted in Fig. 4.3.

4.2 Measurement protocol of interference experiment
The measurement protocol to measure the interference involves the optimization of various
parameters, mostly executed automatically. Before starting the experiment the set-up
is spatially aligned by hand, i.e. the overlap is optimized with regard to position and
angle. The laser current is set such that the output power is stable over time and the
beam spectrum is characterized by single mode operation. The main input parameters are
crystal settings with equal polarization. Starting from the input parameters for a given
crystal setting the program successively tunes the crystal angle for better agreement of
polarization, the position of the prism for better lateral beam overlap and the reference
arm polariser for better intensity equalizing. The motorized preselection polariser in the
test arm is automatically set according to the crystal angle. All these parameters are
optimized with the aim of maximizing the visibility, i.e. the program shortly measures the
visibility for a range of tested configurations and chooses the best setting. This procedure
is first performed coarsely, i.e., in greater intervals of change, then finely. In between the
program stops its loop, so that the experimenter may realign the set-up manually. In
particular the optical components in front of the crystal are shifted accordingly and - if
possible - the overlap is optimized with the degrees of freedom, which are not accessible with
motors. As this is done by eye, i.e., with the help of the camera, the program incorporates
the option of checking the visibility in between for monitoring purposes. Additionally the
prism in the reference arm is moved to compensate for low temporal coherence in the case
of the misaligned laser system. After the final fine-tuning run, the actual measurement
is carried out, by recording the output intensity over a longer time interval. This last
step is repeated a few times for a given crystal setting to check the reproducibility of
the fine-grained optimizing procedure. This loop successively passes through all the input
settings.

4.2.1 Data evaluation
The data of the interference experiment are evaluated in the following way. To properly
account for possible laser intensity fluctuations over time, the interference signal from
output port 2 is normalized to the signal from output port 1, where the internal background
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of each photo diode - noise in the absence of laser photons - is subtracted from the respective
signal. The maxima and minima of the resulting intensity modulation over time are then
separately fitted to parabolas within each ramp interval, where turning points are excluded.
Thereby maximal and minimal values are determined, from which the visibility value is
computed. A single mean visibility value for a certain crystal tilting angle is calculated
out of several maximal intensities obtained in consecutive measurements. Due to, e.g.,
mechanical instabilities of the motor controlling the crystal, some data sets are found to be
unreliable. In particular the measured data is checked for technical sources of error in an
unbiased manner. Furthermore the evaluation script outputs a warning if the fit quality is
not above a certain threshold.





5 Experiments and discussion of results
This chapter summarizes the measurements performed and discusses their results. This
includes the characterization of the polarization, the spectral, temporal and spatial prop-
erties and of the stability of the output power of the laser beam to determine the quality
of interference, as described in section 5.1. In addition to desired effects it is required to
quantify also undesired effects one is faced with within the experimental set-up in order
to either compensate them if possible or to account for them as sources of error. Section
5.2 focusses on measurements concerning the properties of the birefringent crystal in the
test arm because it is the crucial element for the experiment. In the following main section
5.3 the results of the interference experiment are presented and analysed. The chapter
concludes with the comparison of the experimental scaling behaviour to the theoretical
one in section 5.4.

5.1 Beam properties
5.1.1 Characterization of the spatial distribution
In practice the spatial distribution differs from the idealized circular symmetric Gaussian
beam profile. These deviations are visible in Fig. 5.1, where the beam profile of the test
arm was recorded with a beam profiling device at output port 2.
The distribution is essentially Gaussian, in particular the beam profile is not substantially

disturbed by the various components, in particular the birefringent crystal, but keeps its
shape during propagation. However, local deviations from an ideal profile lower the spatial
coherence of the two beams. Using a beam profiling camera the waist radius W0 of the
collimated beam is determined to about 813µm from intensity profiles measured at several
distances without components. This corresponds to a Rayleigh length of about 2.7 m in air,
which is effectively reduced, when the imperfect beam quality is accounted for. Still, for
the smaller length scale of the set-up the beam can effectively considered to be collimated.
The waist radius is needed for computing the magnitude of the interaction strength, given
by εg∆Q0, via the relation W0 = 2∆Q0 for the comparison of the experimental with the
theoretical scaling behaviour.
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Figure 5.1: Beam profile in test arm where the crystal was not tilted. The axis denotes the
number of pixels, where each pixel has a width of 6.7µm .
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5.1.2 Characterization of the spectral distribution
Temporal coherence can be measured in terms of the coherence length lc. In an interfero-
metric set-up the latter may be defined as the displacement length z, where the visibility
is reduced to 1/

√
2 from its maximal value [30]:

V (lc) = 1√
2
V (z = 0) (5.1)

In the course of this thesis, lc of the employed laser light was determined after observations
seemed to imply an unexpectedly small coherence length. To measure lc the maximum
visibility is recorded for varying positions of the reference arm prism, which is manually
displaced via a translation stage. During a measurement interval the phase difference is

Figure 5.2: Measurement of the coherence length. Resulting visibility values for varying
displacements of the prism in the reference arm. The set-up was optimized for
a crystal tilting angle of 44.98◦.

continuously modulated via the piezo element at the prism, which is regulated by the ramp
signal given out by the function generator. Fig. 5.2 exemplary shows the resulting function
for the setting, where the visibility is optimized for a crystal tilting angle of 44.9814◦.
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Evidently, a fast decrease of visibility with increasing displacement has been observed,
such that V (lc) was reached for a displacement of approximately 5 mm only. This value
was also reproduced with other crystal settings. As the coherence length lc is inversely
proportional to the linewidth ∆λFWHM of the beam spectrum, a short lc implies a broad
∆λFWHM, which in turn signifies low spectral coherence. The spectral distribution was
measured by means of an optical spectrometer. While the peak wavelength may be deduced
directly from Fig. 5.3, the resolution of the device is not sufficient to read off the exact
value of ∆λFWHM directly. For a peak wavelength of about 780.9 nm the linewidth is

Figure 5.3: Measurement of the spectral distribution. The spectrum is peaked around a
wavelength of 780.9 nm. The resolution of the spectrometer is not sufficient to
detect a possible multi-mode shape.

calculated to ∆λFWHM ≈ 0.08 nm using Eq. (2.36). In the frequency representation this
translates to a width of about 40 GHz. The reason for this relatively broad distributions
is found to be the misalignment of the angle of the external grating of the diode laser, not
ensuring proper feedback. With an assumed external resonator length of about 1.5 cm,
the free spectral range of external modes is about 10 GHz, which means the laser operates
in multiple modes simultaneously. A single mode linewidth, whose upper bound of about
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19 MHz was determined with the scanning optical cavity, was realized with a newly set-up
laser system, which ensured temporal coherence over the range of the set-up. Due to better
resolution an optical cavity is used to monitor the spectral distribution for the interference
experiment because the spectrum also changes with the current. The laser current is chosen
such that the laser operates on a single longitudinal mode.
For most of the measurements presented in this thesis, performed with the original,

misaligned laser system, the path lengths had to be balanced manually for different effective
crystal lengths to maximize the visibility despite of the low temporal coherence.

5.1.3 Polarization balancing

Figure 5.4: Quantifying the birefringence of the beam splitter in the reference arm. The
linear polarization is scanned with an additional motorized polarized at output
port 2. The contrast of the blue intensity modulation (visibility of 94.31%) is
enhanced by the use of an additional thin crystal, which is placed in front of
the beam splitter, denoted in green (visibility of 99.81%). For reference the M-
polariser is placed next to the variable polariser resulting in an optimal contrast
(red, visibility of 99.86%).

Maximal visibility also requires to equalize polarization in both interferometer arms at
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the location of the second photo diode (output port 2). Conceptually this is implemented
by separate projection onto the appropriate polarization state in each arm. The idealized
setting comprises a minus-polariser in the reference arm and a plus-polariser as posts-
election for the beam in the test arm because its polarization is reflected at the beam
splitter. However, the beam splitter features slight circular and linear birefringence, which
affects transmitted and reflected beam in an unequal manner. The effect becomes visible
by rotating the polarization of an additional motorized polariser at the location of output
port 2 when the respective set polariser is placed behind or in front of the beam splitter.
Exemplarily shown in Fig. 5.4 is the difference in intensity modulation for the reference
arm. The linear polarization rotation manifests itself in a tiny lateral displacement of
the sinusoidal function, while the phase shift between horizontal and vertical polarization
causes the modulation depth to decrease. The polarization of the reference arm is there-
fore matched to that of the test arm by a corresponding combination of a slightly rotated
M-polariser and an auxiliary aligned crystal as described in section 4.1.3.

5.1.4 Output power
Due to various external and internal influences, the laser output power is subject to fluc-
tuations, which add the actual interference modulation at output port 2. The monitoring
photo detector at output port 1 serves for normalization according to

I = Ioutput port 2 − Ibackground output port 2

Ioutput port 1 − Ibackground output port 1
, (5.2)

where the background noise of each detector is subtracted. However this method can only
cancel fluctuations to some extent. As the two detectors are not equal and operate with
different capacities and resistors, they differ in their internal (dis)charging time, meaning
that fast fluctuations might be averaged out by the slower detector. This becomes visible
when fluctuations in the signal at op2 and op1 are not consistent with each other, i.e.,
appear only in one of them and therefore do not cancel by applying Eq. (5.2). Therefore for
all measurements the laser current is tuned such that the output power is most constant.
Interestingly, while there is always one setting of the current, where the laser operates
stable, the other ones produce high frequency fluctuations in their output power, as can
be seen in Fig. 5.5.

5.2 Crystal related measurements

5.2.1 Investigation of the beam deflection
The desired difference in displacement for the ordinary and the extraordinary beam is
achieved by rotating the crystal around its optical axis, which is vertically aligned. In this
way the latter stays perpendicular to the propagation direction ~k of the incident beam
irrespective of the tilting angle. This ensures constant refraction indices, no and ne. The
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Figure 5.5: Output power, recorded at output port 1, for different settings of current, given
in mA. The laser intensity is subject to fluctuations. For measurements the
current is tuned such that the output is maximally stable over time.

angle of incidence, i.e., the tilting angle θ of the crystal, determines the refraction angles
θ(o) and θ(e) according to Snell’s law. This results in a spatial separation δx of the two beam
components behind the crystal according to Eq. (2.43). The distance is experimentally
obtained by separately recording the position of the beam for horizontal as well as for
vertical input polarization for varying crystal angles. The useful angles are in the range of
[0◦; 45◦] since δx does not increase significantly for larger tilting angles. The beam profiling
camera has a resolution of 1024×1024 pixels, where each pixel corresponds to 6.7µm. From
each measurement picture the beam centre is fitted to a Gaussian function, which takes
into account the detected background noise. The so determined position values are given
with 95% confidence intervals. The x coordinates of ordinary and extraordinary beams are
further fitted by δxe and δxe from Eq. (2.43) to extract d = 4529.6138µm and no = 1.973,
ne = 2.190. The latter are in good agreement with the refractive indices obtained from the
Sellmeier equation for a wavelength of 780 nm, namely 1.9738 and 2.1883. The resulting
graph in Fig. 5.6 shows δxo and δxe as a function of the tilting angle.
The fitted parameters are implemented in the program for the measurement protocol,
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Figure 5.6: Beam deflection by the crystal, used for extracting the exact values of the
crystal thickness d and the refractive indices no and ne. The orientation of the
optical axis is vertical, such that the ordinary beam is horizontally polarised,
while the extraordinary beam is vertically polarised. The point of intersection
may be used for an approximate calibration of the crystal angle.

such that the motorized prism is moved automatically to compensate the mean displace-
ment of the whole beam δxe+δxo

2 for a given crystal angle. It can be driven in steps of
0.156µm. At an angle of 45◦ the mean displacement is about 2042µm, while the beam
separation is only about 137µm. By contrast, the y coordinates, plotted in Fig. 5.7, are
supposed to stay constant for varying tilting angles. The beam height of both beam com-
ponents is not perfectly constant, but varies about several µm. The difference in height
for the H- and the V-polarization component is caused by the fact that the motorized
polariser exhibits slight imbalance in its mounting, such that the beam transmission in the
horizontal configuration does not exactly coincide in space with the one in the vertical.
In the interference experiment the preselection stays P-polarized in good approximation,

or more specifically is adjusted only over a fraction of one angular degree (see section 5.2.5),
such that this effect does not pose a problem. The same mounting instability can be seen
in the reference arm, where the effect is much larger. Fig. 5.8 shows the position change
of the beam center, when the motorized polariser is rotated over the full rotation of about
360◦, which causes rather large spatial deviation. Encircled in red is the range typically
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Figure 5.7: Beam stability in y direction in test arm. The height position changes within
a range of several µm.

used for the interference experiment, which is depicted in Fig. 5.9 in close-up. Because
the polariser is only rotated about a few degrees to balance the intensities within one
measurement series, the deviations are limited to a few µm.
Due to these spatial instabilities the overlap of the two arms is automatically as well as

manually adjusted for a given setting of crystal and polarization angles in the course of
the experiment.
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Figure 5.8: Shown is the change of the beam position in x and y direction as the angle of
the motorized polariser in the reference arm is varied over a full rotation.
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Figure 5.9: The change of the beam position in x and y direction as the angle of the
motorized polariser in the reference arm is varied over the relevant range for
interference experiment. The latter corresponds to the encircled part from Fig.
5.8
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5.2.2 Determination of the tilting angles of the crystal

Figure 5.10: To determine the tilting angles, where the polarization stays equal, the crystal
is placed between a M- and a P-polariser. At the angles where the intensity is
minimal the polarization is maintained. The latter are used as starting points
for the automatized optimization in the interference experiment

In addition to the spatial separation of the beam, the birefringent crystal in the test arm
induces a relative phase ∆ϕ between the horizontally polarized ordinary and the vertically
polarized extraordinary beam, which is unwanted at this place. The two beam components
propagate with different phase velocities according to the different refractive indices. For
perpendicular beam incidence the phase mismatch is given by Eq. (2.46). The phase shift
is progressively modulated along the crystal thickness d, which is much greater than the
wavelength. Upon tilting of the crystal the effective optical path length increases differently
for each beam component and therefore the phase shift changes. For the experiment it is
necessary to determine these rotation angles, where ∆ϕ is an integer multiple of 2π in the
beam path behind the crystal, such that the overall polarization is effectively preserved.
To this end the intensity is recorded with the preselection M-polarized and the postselec-

tion P-polarized, as described in section 4.1.3. Fig. 5.10 shows the change of transmitted
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intensity due to the change in polarization upon crystal tilting. With increasing tilting
angle the change of the optical path length difference becomes greater, such that the phase
shift is modulated more quickly. Selected minima of this graph serve as starting angles for
the automatic optimization of the interference experiment.

5.2.3 Mechanical stability of crystal motor settings
The utilized motors exhibit mechanical instabilities at specific motor positions. The crys-

Figure 5.11: Reference visibility measurement in angle steps of 0.2◦ with H-polarization as
preselection to study unstable motor settings. The spatial overlap was not
optimized for simplicity. Rather large deviations occur every 1.2◦, which tend
to increase for larger tilting angles. The intensity modulation of the encircled
visibility values will be exemplarily depicted in Fig. 5.12 and Fig. 5.13.

tal is the component most sensitive to these vibrations, which becomes apparent in the
distorted interference modulation at such motor settings. To determine the occurrence of
such vibrations and their influence on the visibility, the measurement protocol (see section
4.2) is performed with the preselection polariser oriented along H instead of P. This way
there is only one ordinarily refracted beam and one does not have to account for the phase
shift, which alters the polarization as discussed above. Therefore no further angle optimiz-
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ing is needed, while other parameters are automatically optimized as usual. The manual
adjustments are omitted for simplicity.
The resulting graph is shown in Fig. 5.11, where the visibility is recorded in angle steps

of 0.2◦. Most of the data points are approximately constant, as expected, and form a rather
stable line across the tilting range. Deviations, whose magnitude increases with increasing
tilting angle, occur every 1.2◦. The reason for this increased deviation is that vibrations
cause larger optical path variations in the tilted configuration, which results in greater
distortion of the interference property. Fig. 5.12 shows the intensity variation over time
for an exemplary data point from Fig. 5.11 obtained for an angle of 37◦, where the visibility
is lowered. For comparison, Fig. 5.13 shows the intensity modulation corresponding to a
good angle of 4.4◦ resulting in high visibility.

Figure 5.12: The interference pattern is distorted at unstable motor settings. Exemplarily
shown is the intensity signal corresponding to the data set from the visibility
graph of Fig. 5.11 at an angle of 37◦. The resulting interference pattern is
unreliable and the visibility decreases. The effect becomes larger with larger
tilting angles.

Thus, the useful angle settings are limited by both the condition of maintaining the
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Figure 5.13: Exemplarily shown is the intensity modulation corresponding to the data set
from the visibility graph of Fig. 5.11 at an angle of 4.4◦. This represents an
angle position, where the polarization of the incoming beam is maintained.

polarization and the condition of mechanical stability of the motor, which has a periodicity
of at most 1.2◦.

5.2.4 Characterizing the alignment of the optical axis of the crystal
The optical axis of the crystal has to be aligned vertically, i.e. perpendicular to the incident
beam. With preselection V-polarized and postselection H-polarized the optical axis is
adjusted such that the transmitted power, measured with a power meter, is minimal.
The accuracy of the performed adjustment procedure was limited, as can be seen from
the fact that for varying tilting angles the power ranges from 14 nW to 22 nW, when the
background noise of the power meter is subtracted. The corresponding modulation is
depicted in Fig. 5.14, where the y axis is scaled to match the recorded power range. For
perfectly calibrated polarisers and optimally aligned optical axis the signal is supposed to
stay minimal irrespective of the tilting angle of the crystal. However, the deviation arising
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Figure 5.14: Optical axis alignment. The minimal signal measured with the sequence V -
Crystal - H ranges from 14 nW to 22 nW, while the maximal signal, obtained
with H - Crystal - H, is about four orders of magnitude higher.

from slight mismatches is minor with reference to the recorded power of 235µW for pre-
and postselection horizontally polarized. Due to the extinction ratio of about 1 : 10000 the
alignment of the optical axis can be considered precise.

5.2.5 Compensating polarization dependent transmission
Despite the anti-reflection coating of the crystal, the transmission is slightly different for
the H- and V-polarized beam depending on its tilting angle. The transmitted signal cor-
responding to horizontal, TH , and vertical polarization, TV , is individually recorded in
the test arm starting from an initially plus-polarized beam. As the optical axis is aligned
with respect to the H-V-basis, the horizontally polarized beam is assumed to stay hori-
zontal upon propagation and analogously for the vertical polarization. Fig. 5.15 shows
that for angles below 34.5◦ the transmission for vertical polarization is slightly higher than
that for horizontal, while it is reversed for the remaining range. The transmission of the
initially plus-polarized beam is depicted for comparison. To ensure equal transmission
amplitudes for the interference experiment, i.e.,

√
TH =

√
TV , the preselection polariser
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Figure 5.15: Transmission without postselection

has to be set such that it compensates for the difference. Its state may be written as
|Pvar〉 = cos(β)|H〉+ sin(β)|V 〉. As the compensating polarization angle β is dependent on
the tilting of the crystal θ, it is fitted as a function of the latter by β = arctan

(√
TH(θ)√
TV (θ)

)
.

Although the effect is rather small, the compensation is implemented in the measurement
program, which automatically adjusts the preselection according to θ. What can also be
seen in Fig. 5.15 is an underlying intensity modulation, which is different for each polar-
ization component. This could be caused by multiple reflections of a fraction of the beam
inside the coating of the crystal. Also the overall transmitted intensity decreases.

5.3 Interference experiment

5.3.1 Analysis of visibility optimization within a measurement series
The measurement procedure involves the maximization of the visibility for each crystal
setting by optimizing various parameters. The pre-settings for this measurement include
tuning the laser current for obtaining a stable output power and a single longitudinal mode,
featuring high temporal coherence. Thereby also a certain wavelength is selected. If the
current and therefore the wavelength is different from previous measurement settings, it is
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crucial to balance the polarizations of both arms accordingly. With a changed wavelength,
the phase shift, induced by a birefringent crystal, changes. In particular the ratio of the
optical path length difference to the wavelength alters. This affects the polarization change
induced in both crystals and since only the one in the test arm is automatically optimized
with respect to visibility, while the one in the reference arm is fixed, the polarization in the
reference arm has to be manually aligned for that specific wavelength setting. If this is not
accounted for, only one nanometer of wavelength change can cause significant decreases in
the visibility. As the current is not changed during one measurement run, it is sufficient
to balance the polarizations once beforehand. The automatized optimization during a
measurement run involves three parameters:

• tuning the crystal angle for a phase-preserving position starting from the input angles

• moving the prism in the test arm to account for the lateral mean displacement of the
ordinary and extraordinary beam for better spatial overlap with the reference beam

• balancing the intensity of both arms by setting the motorized polariser in the refer-
ence arm

From these degrees of freedom the relative phase induced by the crystal is the most sensitive
one. If the angle cannot be optimized to a polarization-maintaining position the visibility
drops significantly. This effect is greater for larger angles as the phase relation is more
sensitive to deviations there, as seen in Fig 5.10. In this region it becomes more difficult to
reach the optimal points of the phase modulation as the minimal angle step size is limited to
about 0.01875◦. The degrees of freedom, which cannot be optimized automatically include
the spatial angle and the height position. However, these are essential for optimal overlap
of the two interferometer arms and consequently for the maximal achievable visibility.
Therefore both parameters are manually aligned by means of tuning the tip and tilt set
screws on the prism mounting in the reference arm and on the first beam splitter to
compensate for subtle mismatches, for each angle setting of the crystal as described in 4.2.
The angle mismatch, as shown in Fig. 4.2, manifests itself in the characteristic fringes
or swiping patterns, which facilitates its detection and therewith its compensation. The
mismatch in height position is difficult to observe by eye and therefore difficult to correct.
It does not stay constant during the measurement run as the position offsets due to the
mounting imbalance of both motorized polarisers and that of the crystal in the test arm are
subject to to change in each measurement setting. Likewise, the moving prisms could alter
the position offset if they are mounted slightly oblique. The combination of those factors
results in a changing spatial offset, which is hardly traceable with the used experimental
equipment.

5.3.2 Scaling behaviour
An exemplary measurement series is depicted in Fig. 5.16, where the visibility is recorded
for five different values of interaction strength. The latter is given as gε

∆Q0
, which translates

from the crystal tilting angle θ via the relations 2.43 and 2.44 and from W0 = 2∆Q0.
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Figure 5.16: Experimental scaling behaviour in terms of visibility

Each data point is measured ten times after a separate automatic fine-tuning optimiza-
tion to reduce the error caused by the optimization procedure. The blue data points
correspond to visibility values obtained for the weak value setting, while the red ones refer
to the visibility values in the expectation value setting. i.e. without postselection. The
former show a rather stable visibility over the measured range of interaction strength,
while the latter decrease more quickly, as expected. If all involved degrees of freedom are
perfectly optimized resulting in ideal interference, the initial visibility would be 100% for
both cases. This includes the polarization, the intensity, the temporal and spatial prop-
erties. Both data sets, however, do not start at 1 due to various imperfections, which are
encountered in a real experiment. To fit each of them to the theoretical scaling function
DA = arccos(Vmax) these systematic errors are modelled by angle offsets η1 and η2, which
enter the Bures angle. Due to the high dimensionality of the overall Hilbert space it is
very unlikely that these offsets are collinear to the intended scaling direction. Therefore we
assume them to be orthogonal. With the deviation angle η and the Bures angle, henceforth
called DA,th, being small, the following approximation is valid:

D̃A =
√

sin2(η) + sin2(DA,th) ≈
√
η2 +D2

A,th (5.3)

Therefore the modified expressions, capable of taking into account real experimental con-
ditions, are formulated as

D̃A (|φe〉, |φw〉) ≈

√√√√η2
1 +

(
ε2g2

4
√

2(∆Q0)2

)2

, (5.4)
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for the Bures angle between the states associated with the weak value and the eigenvalue,
and as

D̃A (|φe〉, σex) ≈

√√√√η2
2 +

(
εg

2∆Q0

)2

. (5.5)

for the Bures angle between the states associated with the expectation value and the
eigenvalue. The offset angle η is visualized in Fig. 5.17. For small interaction strength

𝜂

~

Figure 5.17: Experimental Bures angle. The observed angle in the experiment involves
an offset angle η, which is assumed orthogonal to the intended angle DA,th.
As the description uses a metric space, the angles can be understood as dis-
tances. Therefore the experimental Bures angle can be modelled by use of
Pythagoras’s theorem as D̃A ≈

√
η2 +D2

A,th.

the impact of η1 and η2 is comparably large, while for increasing strength these modified
Bures angle expressions asymptotically converge to the ideal ones. The fact that η1 and η2
are not equal arises from the changed initial conditions, i.e. the set-up is slightly different.
With the fitted offsets the visibility values in Fig. 5.16 agree well with the expressions 5.4
and 5.5. The same can be seen in Fig. 5.18. The data points of the expectation value
case follow the modified Bures angle scaling very well and reside almost exactly on the fit
function. In the weak value case the data points are constant to a good approximation,
where two of the values at around 0.10 gε

∆Q0
and 0.12 gε

∆Q0
even lie below the fitted function.

Because the usual experimental conditions are non-ideal, there can be settings during
the measurement run, where the optimization of the various parameters is slightly more
successful compared to other settings, which could explain these smaller values. The error
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Figure 5.18: Experimental scaling behaviour in terms of Bures angle.

bars have been averaged for weak value and expectation value, respectively. They indicate
the reproducibility of the automatic optimization.

5.3.3 Reproducibility and sources of error

As the intended effect is tiny in the available range of interaction strength, small errors
have a great impact on the resulting measurement. The visibility is found to be most
sensitive to the parameters of spatial overlap and polarization-maintaining crystal angles.
The latter is optimized automatically and therefore the optimization is comparable for
different measurement settings. However, due to the finite step size of the motor the
visibility depends on how well the polarization maintaining angle position coincides with
the angle accessible by the motor. A further restricting factor regarding the crystal angles
is that every 1.2◦ the motor exhibits an unstable position such that the angle cannot be
used for the measurement or equivalently that the corresponding measurement has to be
discarded in the data analysis. Thus, the useful angle positions are very limited. The
manual alignment for every data point is hardly reproducible in an exact manner because
there is no reference spatial setting to compare with. In particular the precision of the
alignment of the height position is limited, as this is accomplished by walking the beam
via the first beam splitter and the prism in the reference arm. Other than in the case of an
angle mismatch the interference pattern observed on the camera screen is not considerably
affected by a small deviation and is therefore difficult to correct. Therefore tiny unknown
deviations make different measurement series difficult to be exactly reproduced.
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5.4 Comparison with theory
As the range of the interaction strength is constrained by the properties of the crystal,
i.e., its thickness and its birefringence, as well as by the available width of the laser beam,
pre-set by the lens of the fibre collimator, the experiment can only cover the first part of
the theoretical graph. The successful experimental implementation is based on the premise
of maximizing the visibility for each of the two settings. The resulting scaling behaviours
are comparable if all degrees of freedom, relevant for the visibility, are optimized. Then
the difference in the scaling behaviour results solely from the added postselection. In our
case, small initial offsets η1 and η2 have to be taken into account for both settings. The
Bures angle expressions are reasonably modified according to Eq. 5.3 to capture realistic
conditions. The former converge to the theoretical ones for larger interaction strengths.
Therefore the range, where the expectation value case evolves linearly and the weak value
case scales quadratically cannot be seen in the experiment directly. Instead, the overall
error has to be considered first. Nonetheless, in the range available in the experimental set-
up the difference in the scaling behaviour is clearly visibly despite the offsets and despite
the predicted difference being rather small in that range. The data follows to a good
approximation the expressions for D̃A (|φe〉, |φw〉) and D̃A (|φe〉, σex), where in both cases
only one parameter is added with respect to Eq. 3.34 and Eq. 3.35.



6 Conclusion and outlook
The aim of this thesis was to experimentally demonstrate the scaling behaviour of the
visibility as a function of the interaction strength. Therefore an interferometer was set up
and refined to meet the requirements needed to enable the comparison to the theoretical
expressions in terms of the Bures angle. In summary, it can be said that the difference
in the scaling behaviour between the Bures angle of the states associated with a weak
value and an eigenvalue and the Bures angle of the states associated with an expectation
value and an eigenvalue was clearly verified. Despite of imperfect experimental conditions
it was possible to resolve the respective theoretical scaling functions with the available
experimental equipment. The fact that these imperfections are kept small, allowed to
model an expression for the Bures angle, which is modified by only one parameter in each
case to comply with the experimental conditions. The obtained results agree well with these
slightly modified Bures angle expressions. With the investigation of the scaling behaviours
presented in this thesis, it was possible to make a contribution towards a comprehensive
understanding of the physical meaning of the weak value and therewith to unravel a further
puzzle in the framework. To improve the reproducibility of optimizing the visibility in
the set-up, which is needed for the successful measurement, future measurements could
employ position sensing detectors, which allow for a better comparability of the spatial
alignment between different measurement settings. The spatial degree of freedom of the
two interfering laser beams is a crucial parameter in the optimization of the visibility in
the set-up and was one of the precision limiting factors. Another approach of experimental
realization would be to implement an anomalous weak value instead of the specific case,
when the weak value is zero. In this case the weak value exceeds the range of eigenvalues
of the observable of interest. Then the comparison with expectation value and eigenvalue
is effectively possible by creating respective virtual quantities. Beyond this question, the
set-up can for instance be used to study and compare different realizations of the weak
value, which we leave as a prospect.
Surely, this exceptionally fascinating and challenging topic provides an immense research

potential which is worth studying. The understanding of the concept of the weak value is
far from being complete. Therefore it seems likely that future investigations will lead to
the discovery of so far unknown properties and new effects.
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